А можно дешевле: снижаем стоимость аналитики Big Data в приложениях Apache Spark

Вчера мы говорили про ускорение аналитики больших данных в конвейере из множества заданий Apache Spark. Продолжая речь про обучение инженеров данных, сегодня рассмотрим, как снизить стоимость выполнения Spark-приложений, сократив накладные расходы на обработку Big Data и повысив эффективность использования кластерной инфраструктуры. Экономика Big Data систем: распределенная разработка и операционные затраты...

Ускоряем конвейеры Apache Spark: 3 простых способа

Сегодня рассмотрим несколько простых способов ускорить обработку больших данных в рамках конвейера задач Apache Spark. Читайте далее про важность тщательной оценки входных и выходных данных, рандомизацию рабочей нагрузки Big Data кластера и замену JOIN-операций оконными функциями. Оптимизируй это: почему конвейеры аналитической обработки больших данных с Apache Spark замедляются Обычно со...

Stateful-проблемы JOIN-операций в Apache Spark Structured Streaming и их решения

Недавно мы уже рассматривали выполнение Join-операций в Apache Spark SQL. Сегодня поговорим про особенности потокового соединения в модуле Structured Streaming этого популярного фреймворка аналитики больших данных. Читайте далее, в чем специфика внешних и внутренних соединений потоков Big Data в Apache Spark Structured Streaming, а также как и зачем Inner/Outer Join...

Непростая аналитика больших данных в реальном времени: 3 способа перезапуска заданий Spark Structured Streaming по метке времени Apache Kafka

Совместное использование Apache Kafka и Spark очень часто встречается в потоковой аналитике больших данных, например, в прогнозировании пользовательского поведения, о чем мы рассказывали вчера. Однако, временные метки (timestamp) в приложении Spark Structured Streaming могут отличаться от времени события в топике Kafka. Читайте далее, почему это случается и какие подходы к...

Как подготовить датасет к Machine Learning с PySpark и построить систему потоковой аналитики больших данных на Apache Kafka и ELK: пример прогнозирования CTR

В продолжение разговора о применении технологий Big Data и Machine Learning в рекламе и маркетинге, сегодня рассмотрим архитектуру системы прогнозирования конверсии рекламных объявлений. Читайте далее, как организовать предиктивную аналитику больших данных на Apache Kafka и компонентах ELK-стека (Elasticsearch, Logstash, Kibana), почему так важно тщательно подготовить данные к машинному обучению, какие...

Что под капотом ретаргетинга: прогнозирование намерений пользователя с Apache Hadoop и Spark Structured Streaming на сервисах Amazon

Мы уже рассказывали о возможностях ретаргетинга и использовании Apache Spark Structured Streaming для реализации этого рекламного подхода на примере Outbrain. Такое применение технологий Big Data сегодня считается довольно распространенным. Чтобы понять, как это работает на практике, рассмотрим кейс маркетинговой ИТ-компании MIQ, которая запускает Spark-приложения на платформе Qubole и сервисах Amazon,...

Безопасность + надежность: чем хорош транзакционный протокол фиксации Spark-заданий от Databricks

Продолжая разговор про фиксацию заданий Apache Spark при работе с облачными хранилищами больших данных, сегодня подробнее рассмотрим, насколько эффективны commit-протоколы экосистемы Hadoop, предоставляемые по умолчанию, и почему известный разработчик Big Data решений, компания Databricks, разработала собственный алгоритм. Читайте далее про сравнение протоколов фиксации заданий в Spark-приложениях: результаты оценки производительности и...

Сложности перехода: от локальных Hadoop-кластеров к облачным объектным хранилищам для приложений Apache Spark

Сегодня поговорим про особенности транзакций в Apache Spark, что такое фиксация заданий в этом Big Data фреймворке, как она связано с протоколами экосистемы Hadoop и чем это ограничивает переход в облако с локального кластера. Читайте далее, как найти компромисс между безопасностью и высокой производительностью, а также чем облачные хранилища отличаются...

Большая разница: чем структурированная потоковая передача в Apache Spark отличается от Spark Streaming

В этой статье рассмотрим, что такое Apache Spark Structured Streaming и Spark Streaming, чем они отличаются и что общего между этими 2-мя способами обработки потоковых данных в самом популярном фреймворке аналитики больших данных. Читайте далее, как микро-пакетная передача приближается к режиму реального времени и при чем здесь структуры данных для...

Ускоряем и масштабируем Apache Spark Structured Streaming: 2 проблемы строго однократной доставки и их решения

Вчера мы говорили про реализацию exactly once семантики доставки сообщений в Apache Spark Structured Streaming. Сегодня рассмотрим, что не так с размером компактных файлов для хранения контрольных точек потоковой передачи, какие параметры конфигурации Spark SQL отвечают за такое логирование и как ускорить микро-пакетную обработку больших данных и чтение результатов выполнения...