Что такое непрерывное машинное обучение, как оно работает и при чем здесь MLOps. Почему сложно вести разработку ML-моделей в стиле CI/CD и как CML помогает обойти эти ограничения. Автоматизация процессов непрерывной интеграции и доставки с помощью open-source CLI-инструмента от Iterative.ai. Трудности CI/CD в Machine Learning и MLOps Поддерживаемые DevOps-концепцией идеи...
Чтобы сделать наши курсы для специалистов в области Data Science и ML-инженеров еще более полезными, сегодня рассмотрим, как организовать сквозной CI/CD-конвейер разработки и развертывания системы машинного обучения в соответствии с MLOps-концепцией на 4-х популярных Python-инструментах: MLflow, DVC, Airflow, ClearML. А в качестве примера практической реализации этой идеи разберем кейс банка...
Сегодня рассмотрим наиболее распространенные в MLOps стратегии развертывания, т.е. подходы к внедрению моделей машинного обучения в производство. Выбор стратегии зависит от бизнес-требований и от контекста применения результатов ML-моделирования. Какие бывают стратегии и как они реализуются: краткий ликбез с примерами для ML-инженеров и MLOps-специалистов. Пакетное прогнозирование и веб-сервисы для MLOps Это...
Поскольку разработка и развертывание ML-систем отличаются от традиционного ПО, о чем мы писали здесь и здесь, процесс тестирования модели машинного обучения тоже имеет свою специфику, которую учитывает концепция MLOps. Читайте далее, что и как тестировать при разработке систем Machine Learning, а также при чем здесь подход Arrange-Act-Assert. MLOps и тестирование...
Недавно мы писали про сложности разработки и развертывания ML-систем и способы их решения с помощью концепции MLOps. Продолжая эту тему, важную для обучения специалистов по Data Science, аналитиков и инженеров данных, сегодня рассмотрим основные некоторые преимущества фреймворка MLFlow для создания надежных конвейеров CI/CD в системах машинного обучения. CI/CD в MLOps...
Постоянно добавляя в наши курсы по Apache Spark и машинному обучению практические примеры для эффективного повышения квалификации Data Scientist’ов и инженеров данных, сегодня рассмотрим задачу пакетного прогнозирования и планирование ее запуска по расписанию без применения масштабных MLOps-решений. Apache Spark для пакетного прогнозирования Есть много готовых решений и инструментов для пакетного...
Обучая специалистов по Data Science, аналитиков и инженеров данных лучшим практикам MLOps, сегодня поговорим про переносимость моделей машинного обучения между разными этапами жизненного цикла ML-систем, от разработки до развертывания в production. А в качестве примера разберем, как использовать обученную ML-модель из Apache Spark за пределами кластера, упаковав ее в ONNX...
В рамках обучения дата-инженеров и ML-специалистов лучшим практикам MLOps, сегодня рассмотрим практический пример построения конвейера машинного обучения на Airflow, MLFlow, SageMaker и других сервисах Amazon. А также как Apache Spark версии 3 сократил расходы на облачный EMR-кластер почти в 2 раза. MLOps с AirFlow и MLFlow в облаке AWS Ранее...
Практическая реализация MLOps-концепции на примере международной рекрутинговой компании Glassdoor. Как построить самоуправляемую автоматизированную систему разработки и сопровождения ML-моделей с MLFlow, Apache Spark и AirFlow, Kubernetes, GitLab, SageMaker Feature Store, Whylogs, Jenkins, Spinnaker и Prometheus с Grafana. Предыстория: зачем MLOps в Glassdoor Glassdoor с 2008 года помогает соискателям по всему миру...
В этой статье по обучению дата-инженеров разберем, что такое Apache Beam, чем этот фреймворк отличается от AirFlow и что между ними общего. На первый взгляд Apache Airflow и Beam являются конкурентами: они предназначены для организации процессов обработки данных в определенном порядке. Оба инструмента являются open-source проектами, широко используются и поддерживаются...