Как построить ETL-pipeline на Apache Spark или что под капотом StreamSets Transformer

Однажды мы уже рассказывали про StreamSets Data Collector, сравнивая его с Apache NiFi. Сегодня рассмотрим, как устроен этот исполнительный движок для запуска конвейеров обработки больших данных, каким образом он связан с Apache Spark и чем полезен инженеру Big Data при организации ETL-процессов на локальных и облачных озерах данных (Data Lake,...

Заменит ли Apache Kafka прочие СУБД в мире Big Data: за и против

В этой статье мы поговорим про возможность нехарактерного использования Apache Kafka: не как распределенной стримминговой платформы или брокера сообщений, а в виде базы данных. Читайте далее, как Apache Kafka дополняет другие СУБД, не заменяя их полностью, почему такой вариант использования возможен в Big Data и когда он не совсем корректен....

Что не так с Delta Lake на Apache Spark: 7 основных проблем и их решения

При всех своих достоинствах Delta Lake, включая коммерческую реализацию этой Big Data технологии от Databricks, оно обладает рядом особенностей, которые могут расцениваться как недостатки. Сегодня мы рассмотрим, чего не стоит ожидать от этого быстрого облачного хранилище для больших данных на Apache Spark и как можно обойти эти ограничения. Читайте далее,...

Облачное Delta Lake на Apache Spark от Databricks vs классическое озеро данных на Hadoop: 5 главных отличий

Продолжая разговор про Delta Lake, сегодня мы рассмотрим, чем это быстрое облачное хранилище для больших данных в реализации компании Databricks отличается от классического озера данных (Data Lake) на Apache Hadoop HDFS. Читайте далее, как коммерческое Cloud-решение на Apache Spark облегчает профессиональную деятельность аналитиков, разработчиков и администраторов Big Data. Больше, чем...

Как ускорить озеро данных или что такое Delta Lake на Apache Spark

Озеро данных (Data Lake) на Apache Hadoop HDFS в мире Big Data стало фактически стандартом де-факто для хранения полуструктурированной и неструктурированной информации с целью последующего использования в задачах Data Science. Однако, недостатком этой архитектуры является низкая скорость вычислительных операций в HDFS: классический Hadoop MapReduce работает медленнее, чем аналоги на Apache...

Какой Machine Learning в вашем production: 5 популярных паттернов на любой вкус и 2 основные стратегии внедрения

Завершая цикл статей про MLOps, сегодня мы расскажем про 5 шаблонов практического внедрения моделей Machine Learning в промышленную эксплуатацию (production). Читайте далее, что такое Model-as-Service, чем это отличается от гибридного обслуживания и еще 3-х вариантов интеграции машинного обучения в production-системы аналитики больших данных (Big Data), а также при чем тут...

Почему бизнес-анализ особенно нужен в проектах Big Data: взгляд BABOK

Сегодня мы расскажем о важности прикладного бизнес-анализа в проектах Big Data, включая цифровизацию частного бизнеса и государственных предприятий. Читайте в нашей статье, как области знаний профессионального руководства по бизнес-анализу BABOK®Guide соответствуют типовым этапам внедрения технологий больших данных в корпоративную деятельность, и почему цифровая трансформация любой компании – это, прежде всего,...

Успехи Industry 4.0 на российских заводах: 5 примеров СИБУРа

В этой статье рассмотрим, как технологии Industry 4.0 помогают российскому нефтехимическому холдингу СИБУР повысить операционную эффективность производства и обеспечить безопасность труда. Сегодня мы собрали для вас 5 примеров практического использования различных методов и инструментов Big Data, Machine Learning, Industrial Internet of Things (IIoT), а также XR (AR+VR). Зачем нефтехимикам технологии...

Как найти товарные остатки с помощью Big Data и Machine Learning: пример Леруа Мерлен

Чтобы наглядно показать, как аналитика больших данных и машинное обучение помогают быстро решить актуальные бизнес-проблемы, сегодня мы рассмотрим кейс компании Леруа Мерлен. Читайте в нашей статье про нахождение аномалий в сведениях об остатках товара на складах и в магазинах с помощью моделей Machine Learning, а также про прикладное использование Apache...

Быстрая аналитика больших данных в Data Lake на Apache Kudu с Kafka и Spark

В продолжение темы про совместное использование Apache Kudu с другими технологиями Big Data, сегодня рассмотрим, как эта NoSQL-СУБД работает вместе с Kafka, Spark и Cloudera Impala для построения озера данных (Data Lake) для быстрой аналитики больших данных в режиме реального времени. Также читайте в нашей статье про особенности интеграции Apache...