Apache Spark для инженера данных: 3 полезных инструмента построения ETL-конвейеров

Дополняя наши курсы дата-инженеров полезными примерами, сегодня рассмотрим, как упростить разработку и мониторинг ETL-конвейеров с помощью дополнительных технологий Big Data, совместимых с Apache Spark. Читайте далее, когда и зачем инженеру данных пригодятся SaaS-продукт Prophecy.io, движок StreamSets Transformer и REST-интерфейс Apache Livy, а также как все они связаны со Spark. 3...

3 проблемы с топиками Kafka для администратора кластера и способы их решения

В этой статье рассмотрим типичные проблемы топиков Apache Kafka, с которыми сталкивается каждый администратор Big Data кластера. Читайте далее, почему топики чрезмерно разрастаются, как работает очистка логов, когда старые сообщения могут остаться в почищенных сегментах и какие параметры конфигураций помогут справиться со всем этим. Брокеры и разделы: как устроены топики...

Что не так с конвейером Apache Kafka и Spark Structured Streaming для потоковой аналитики больших данных в AWS: практический пример

Чтобы дополнить наши курсы по Spark для разработчиков распределенных приложений и инженеров данных практическими примерами, сегодня рассмотрим кейс американской ИТ-компании ThousandEyes, которая разрабатывает программное обеспечение для анализа производительности локальных и глобальных сетей. Читайте далее, как создать надежный конвейер и устойчивое озеро данных (Data Lake) для быстрой аналитики Big Data в...

Конфигурирование исполнителей Spark-заданий в AWS: ядра ЦП и проблемы с памятью

Продолжая вчерашний разговор про оптимизацию Spark-приложений в облачном кластере Amazon Web Services, сегодня рассмотрим типовую последовательность действий по конфигурированию заданий и настройке узлов для снижения затрат на аналитику больших данных. А также разберем, какие проблемы с памятью исполнителей могут при этом возникнуть, и как инженеру Big Data их решить. Еще...

Как сэкономить на AWS-кластере: экономика Big Data и конфигурирование облачных Spark-приложений

В рамках обучения администраторов Apache Hadoop и инженеров Big Data, сегодня поговорим про стоимость аналитики больших данных с помощью Spark-приложений в облачном кластере Amazon Web Services и способы снижения этих затрат за счет конфигурирования заданий и настройки узлов. Читайте в этой статье, как число процессорных ядер в исполнителях Spark-заданий формирует...

Что такое бакетирование таблиц в Apache Spark SQL и как это улучшает аналитику больших данных

Сегодня поговорим про бакетирование таблиц в Apache Spark для оптимизации производительности заданий и снижения затрат на кластер при их выполнении. Читайте далее, что такое Bucketing в Spark SQL и как это предотвращает операции перетасовки в приложениях аналитики больших данных. Что такое Bucketing и зачем это нужно в Big Data Бакетирование...

Как перейти на Apache Kafka без Zookeeper: готовимся к KIP-500 в релизе 2.8.0

Спустя пару месяцев с выпуска Apache Kafka 2.7.0, Confluent анонсировал новый релиз этой платформы потоковой передачи событий, в котором, наконец, случится долгожданный отказ от Zookeeper. Читайте далее, как это облегчит жизнь администратору Kafka-кластера и разработчику распределенных приложений потоковой аналитики больших данных, а также как подготовить свою Big Data инфраструктуру к...

ksqlDB и Kafka Streams: versus или вместе – сходства и различия инструментов потоковой аналитики Big Data

Продолжая разговор про обучение разработчиков Apache Kafka, сегодня рассмотрим, чем ksqlDB отличается от Kafka Streams. Также читайте далее про основные достоинства и недостатки перезапуска KSQL в виде отдельной базы данных потоковой передачи событий с API-интерфейсом на основе SQL для запроса и обработки информации из топиков Kafka. ksqlDB vs Kafka Streams:...

Потоковая аналитика больших данных с ksqlDB на Kubernetes: практический пример

В этой статье поговорим про KSQL на примере кейса компании американской компании Pluralsight, которая предлагает различные обучающие видео-курсы для разработчиков ПО, ИТ-администраторов и творческих профессионалов. Читайте далее, как использовать Apache Kafka с Kubernetes для построения надежных систем потоковой аналитики больших данных, а также чем ksqlDB отличается от KSQL. Apache Kafka...

Почему ваши Spark-приложения такие медленные: устраняем задержки аналитики Big Data

Недавно мы уже рассказывали про ускорение целых аналитических конвейеров на Apache Spark и отдельных задач, а также рассматривали способы оптимизации Shuffle-операций в SQL-модуле этого Big Data фреймворка. Сегодня разберем, какие факторы провоцируют задержки в Spark-приложениях, и как дата-инженер может их найти, чтобы устранить причины и следствия этих проблем. Задержки Spark-приложений...