Сколько стоит цифровизация: что такое ФСА и зачем это нужно в Big Data

В этой статье мы расскажем, что такое функционально-стоимостный анализ, как он связан с концепцией бережливого производства (Lean) и каким образом позволяет оценить и оптимизировать бизнес-процессы. Также рассмотрим, почему этому методу стоит уделить внимание при изучении основ цифровизации, а также в рамках проектов по внедрению технологий больших данных (Big Data). Что...

Почему вам нужна расширенная аналитика Big Data и как ее получить

Сегодня мы рассмотрим, что такое расширенная аналитика и дополненное управление данными, как они связаны с цифровизацией бизнеса и почему исследовательское бюро Gartner включило эти технологии в ТОП-10 самых перспективных трендов 2020 года. Читайте в нашей статье, как машинное обучение (Machine Learning) помогает аналитикам и руководителям находить во множестве больших данных...

Как увидеть лес за деревьями: что такое Decision Tree и зачем это нужно в Big Data

Продолжая насыщать курс Аналитика больших данных для руководителей важными понятиями системного анализа, сегодня мы рассмотрим, что такое дерево решений (Decision Tree). А также расскажем, как этот метод Data Mining и предиктивной аналитики используется в машинном обучении, экономике, менеджменте, бизнес-анализе и аналитике больших данных. Как растут деревья решений: базовые основы Начнем...

Big Data и Machine Learning против COVID-19: 3 кейса про коронавирус и искусственный интеллект

11 марта 2020 года ВОЗ объявила о пандемии нового коронавируса (Covid-19), который в декабре 2019 был впервые обнаружен в китайском мегаполисе Ухань. С тех пор вирус стремительно распространяется по всей планете, вызывая острые респираторные заболевания. Сегодня мы расскажем, почему, несмотря на повсеместные карантины и обвал мировых рынков, все не все...

Что такое Airflow Executor: 5 исполнителей задач и 2 их основных ограничения

Недавно мы рассказывали про Airflow Kubernetes Executor, который позволяет выполнять задачи DAG-графа Эйрфлоу в среде Kubernetes, развертывая Docker-контейнер на отдельном пользовательском модуле (pod). Сегодня рассмотрим, какие еще есть исполнители задач в Apache Airflow, как они используются при автоматизации batch-процессов обработки больших данных и с какими проблемами можно столкнуться при их...

AirFlow KubernetesExecutor: 3 способа запуска и 4 главных плюса для DevOps-инженера

Эффективное обучение AirFlow, также как курсы по Spark, Hadoop, Kafka и другим технологиям больших данных (Big Data) также включают нюансы интеграции этого фреймворка с другими средами. Например, вчера мы рассматривали преимущества DevOps-подхода к разработке Data Flow на примере взаимосвязи Apache Airflow с Kubernetes посредством специальных операторов. Продолжая эту тему, сегодня...

Что такое AirFlow Kubernetes Operator и как это работает: обзор решений от K8s и Google

Вчера мы рассказали, почему запускать Airflow на Kubernetes – это эффективно и выгодно для всех участников batch-процессов с большими данными (Big Data): разработчиков Data Flow, Data Scientist’ов, аналитиков и инженеров. Сегодня рассмотрим, что такое Airflow Kubernetes Operator и чем он отличается от подобной разработки компании Google. Как работает AirFlow Kubernetes...

AirFlow на Kubernetes: DevOps-подход к автоматизации batch-процессов в Big Data

Чтобы обучение Airflow было максимально приближенным к практике, сегодня мы поговорим про особенности реального внедрения этого фреймворка для разработки, планирования и мониторинга пакетных процессов обработки больших данных (Big Data) с учетом современного DevOps-подхода. Читайте в нашей статье, зачем вообще нужна связка Apache Эйрфлоу с Kubernetes и как это реализовать технически....

7 достоинств и 5 недостатков Apache AirFlow

Продолжая говорить про обучение Airflow, сегодня мы рассмотрим ключевые преимущества и основные проблемы этой библиотеки для автоматизации часто повторяющихся batch-задач обработки больших данных (Big Data). Также мы собрали для вас пару полезных советов, как обойти некоторые ограничения Airflow на примере кейсов из Mail.ru, IVI и АльфаСтрахования. Чем хорош Apache AirFlow:...

ETL для пакетов Big Data: 3 примера использования Apache AirFlow

В этой статье мы поговорим про Apache AirFlow - эффективный инструмент для пакетных ETL-задач при работе с большими данными (Big Data): что это такое, как работает и чем полезен для инженера данных (Data Engineer). Также рассмотрим несколько практических примеров реального использования этой библиотеки для разработки, планирования и мониторинга batch-процессов. Что...

Поиск по сайту