Безопасная архитектура LakeHouse с Apache Kafka, управляемая метаданными

Сегодня рассмотрим пример построения гибридной архитектуры LakeHouse c Apache Kafka и Snowflake, которая гарантирует высокую масштабируемость и обеспечивает безопасность данных от несанкционированного доступа с помощью маскирования. От пакетного озера данных на AWS S3 к потоковому LakeHouse Будучи высоконадежной распределенной платформой потоковой передачи событий, Apache Kafka часто используется для обработки потока...

ETL с Apache Spark в озере данных на MinIO

При том, что большинство современных озер данных представляют собой облачные объектные хранилища типа AWS S3, многие предприятия хранят данные в собственном кластере HDFS или даже MinIO. Поэтому сегодня специально для обучения дата-инженеров и ИТ-архитекторов рассмотрим, что представляет собой это хранилище и насколько хорошо с ним взаимодействует Apache Spark. Что такое...

Быстрая индексация данных в HDFS, Hadoop и Spark с библиотекой Dione от PayPal

Чтобы добавить в наши курсы по Apache Hadoop и Spark еще больше интересных примеров, сегодня рассмотрим кейс компании PayPal, которой удалось ускорить работу Hive с помощью open-source библиотеки Dione. Зачем индексировать данные в HDFS и как это сделать быстро. Трудности бакетирования в Hive и Spark Вычислительный движок Apache Spark отлично...

Greenplum 6.21.1: обзор свежего релиза

Совсем недавно, в самом конце августа 2022 года вышел очередной минорный выпуск Greenplum. Специально для обучения дата-инженеров, ИТ-архитекторов и разработчиков распределенных OLAP-приложений мы подготовили краткий обзор самых важных обновлений и изменений версии 6.21.1. 15 исправлений на сервере Greenplum В отличие от июньского релиза, новинок в этом выпуске немного: добавлено новое...

Миграция с Apache HBase в TiDB: кейс Pinterest

Хотя Apache HBase обладает массой достоинств, такими как строгая согласованность на уровне строк при больших объемах запросов, гибкая схема, доступ к данным с малой задержкой и интеграция с Hadoop, эта NoSQL-СУБД имеет ряд недостатков: чрезмерная сложность и дороговизна эксплуатации, отсутствие вторичных индексов и ACID-транзакций. Поэтому инженеры фотохостинга Pinterest приняли решение...

Большая проблема маленьких файлов в Apache Hadoop HDFS

Мы уже писали, что технологии Big Data ориентированы на работу с большими данными, а не множеством маленьких. Сегодня рассмотрим подробнее, почему Apache Hadoop, Spark и основанные на HDFS NoSQL-СУБД Hive и HBase плохо работают с большим количеством маленьких файлов, а также как это исправить. Почему HDFS плохо работает со множеством...

Применение SeaTunnel для управления SQL-заданиями Apache Flink и Spark

Мы регулярно добавляем в наши курсы по Apache Flink и Spark для дата-инженеров полезные материалы и инструменты, которые помогают повысить эффективность разработки и эксплуатации приложений аналитики больших данных. Читайте далее, что такое SeaTunnel и как эта высокопроизводительная платформа интеграции распределенных данных упрощает их потоковую синхронизацию средствами SQL-заданий Apache Flink и...

Идеальная облачная среда озера данных и DaaS: возможности и риски

Чтобы добавить в наши курсы для ИТ-архитекторов и дата-инженеров еще больше практических примеров, сегодня разберем ключевые требования к современному озеру данных и самые последние тренды в аналитике Big Data. Что такое DaaS, зачем это нужно и каковы риски. 7 преимуществ развертывания Data Lake в облаке При том, что Data Lake...

Абсолютно безопасно: PEM-аутентификация Apache Kafka по REST API

Специально для обучения дата-инженеров и администраторов кластера Apache Kafka, сегодня разберем, как обеспечить безопасность клиента этой распределенной платформы потоковой передачи событий по REST API с помощью возможностей открытого ПО. Что такое PEM-файлы и при чем здесь SSL-сертификаты, а также другие криптографические средства защиты данных: кейс инженеров Expedia Group. Инструменты обеспечения...

Динамическое партиционирование в Apache Spark

В этой статье для дата-инженеров и разработчиков распределенных приложений рассмотрим, что такое динамическое партиционирование таблиц в Apache Spark, зачем это нужно и как реализовать такие вставки разделов. Разбираем на практическом примере. Что такое динамическое партиционирование в Apache Spark Партиционирование – это разделение данных на основе значения столбца и их сохранение...