Мониторинг микросервисов с Apache Kafka, Jaeger и OpenTelemetry

В этой статье для обучения дата-инженеров и архитекторов распределенных систем рассмотрим, что такое наблюдаемость, как ее измерить и при чем здесь стандарт OpenTelemetry. А в качестве примера разберем, как французский маркетплейс Cdiscount управляет почти 1000 микросервисов в кластере Kubernetes с Apache Kafka, Jaeger, Elasticsearch и OpenTelemetry. Наблюдаемость распределенной системы: стандарт...

MLOps и ТОП-7 фреймворков для федеративного машинного обучения

Сегодня в области Data Science именно машинное обучение является такой одновременно научной и прикладной сферой, где постоянно возникают новые прорывные идеи и технологии их реализации. Одной из самых популярных ML-тем сегодня считается федеративное машинное обучение. Что это такое и при чем здесь хайповый MLOps, читайте далее. Что такое федеративное машинное...

Spark vs Dask для Data Science-проектов

Сегодня разберемся, когда для Data Science-проектов вместо Apache Spark, самого популярного вычислительного движка аналитики больших данных, стоить выбрать Dask – легковесную Python-библиотеку для параллельных вычислений. И, наоборот, в каких случаях инженер данных и Data Scientist получают преимущества, выбирая Spark. Что такое Dask и зачем он нужен Data Scientist’у Прежде чем...

Apache Hive 3.1.3: обзор обновлений от 8 апреля 2022

В апреле 2022 года вышел очередной минорный релиз Apache Hive, который работает с Hadoop версии 3. Рассмотрим основные улучшения и исправленные ошибки этого обновления, которые пригодятся дата-инженеру и разработчику распределенных приложений аналитики больших данных. Исправленные ошибки В апрельском выпуске популярного NoSQL-хранилища Apache Hive,  которое реализует возможность обращения к данным в...

Улучшение совместимости Greenplum и HDFS благодаря записи/чтению AVRO-файлов с PXF

В этой статье для дата-инженеров рассмотрим новую полезную фичу июньского выпуска Greenplum и обновления интеграционного фреймворка PXF, который обеспечивает интеграцию этой MPP-СУБД с внешними источниками и приемниками данных. Читайте далее, как PXF поддерживает запись данных в формате AVRO в Hadoop HDFS и хранилища объектов, а также чтение логических типов этого...

DWH + Data Lake или что такое LakeHouse

В рамках обучения дата-инженеров и архитекторов корпоративных платформ и приложений аналитики больших данных, сегодня рассмотрим, что такое LakeHouse. Как эта новая гибридная архитектура управления данными объединяет 2 разнонаправленные парадигмы хранения информации, а также чего от нее ожидают бизнес-пользователи, дата-инженеры, аналитики и ML- специалисты. Историческая справка: от DWH к Data Lake...

Как отловить ошибки в конвейере данных на Apache NiFi: лучшие практики

В этой статье для обучения дата-инженеров рассмотрим, почему в потоковых конвейерах обработки данных на базе Apache NiFi случаются ошибки, и какие популярные стратегии и инструменты помогут идентифицировать эти проблемы, а также решить их. Проблемы конвейеров обработки данных на Apache NiFi Конвейеры данных помогают консолидировать информацию из разных источников, чтобы получить...

Мониторинг Flink-приложений: метрики JVM и RocksDB

Мы уже рассматривали важность мониторинга приложений Apache Flink и говорили про метрики отслеживания задержки обработки данных в потоковых заданиях. Сегодня заглянем под капот этого фреймворка и разберем, какие показатели работы JVM, а также RocksDB особенно важны для дата-инженера и разработчика распределенных приложений. Метрики JVM во Flink-приложениях Напомним, основным языком разработки...

3 способа прервать DAG lineage в Apache Spark

Недавно мы говорили про трудности наблюдаемости данных вообще и возможности мониторинга их происхождения в Apache Spark. Сегодня рассмотрим, зачем дата-инженеру прерывать DAG lineage в Spark-приложениях и как это сделать. Что такое DAG lineage и зачем его прерывать? Напомним, Apache Spark использует концепция DAG для выполнения распределенных вычислений. Направленный ациклический граф...

Управление купонами на скидки в маркетплейсе Trendyol с Apache Kafka и Couchbase

Сегодня рассмотрим пример программы лояльности турецкого интернет-магазина Trendyol, где Apache Kafka и документо-ориентированная NoSQL-СУБД Couchbase используются для генерации купонов на скидки. Почему при большом объеме данных случаются проблемы тайм-аутов в Couchbase, как их решить и  при чем здесь коннекторы к Apache Kafka. Архитектура системы управления купонами Trendyol – это популярный...