В этой статье для обучения дата-инженеров и разработчиков распределенных приложений, сегодня разберем опыт ИТ-компании Similarweb, где Apache Spark на платформе Databricks вместо AWS Athena ускорил пакетную обработку данных в 50 раз. Также рассмотрим приемы повышения производительности ODBC-драйвера Databricks для улучшенного взаимодействия с озерами данных. Постановка задачи и ограничения POC для...
В этой статье для дата-инженеров и разработчиков Flink-приложений рассмотрим, как связаны диспетчеры задач и заданий, зачем настраивать автоматическое масштабирование кластера и как это сделать с помощью Google Auto Scaler в облачной инфраструктуре этого провайдера. Роль диспетчера заданий в Apache Flink и механизмы отказоустойчивости Apache Flink — отличный фреймворк создания приложений...
Учитывая рост интереса к DevOps-инструментам, сегодня рассмотрим, зачем переводить кластер Apache Spark, управляемый YARN, в Kubernetes, и как это сделать наиболее эффективно. А также разберем, какие системные метрики контейнерных Spark-приложений надо отслеживать и с помощью каких средств. Зачем переводить кластер Apache Spark от YARN на Kubernetes Apache Spark не зря...
Недавно мы писали про чтение данных из AWS S3 с помощью PySpark-задний. Продолжая разбираться, как перейти от HDFS к облачным объектным хранилищам, сегодня рассмотрим пример чтения и записи файлов из Google Cloud Storage с помощью Apache Spark. От HDFS к GCS Распределенная файловая система Apache Hadoop (HDFS) уже много лет...
Чтобы сделать наши курсы для DevOps-инженеров и специалистов по Machine Learning еще более полезными, сегодня рассмотрим, как автоматизировать развертывание и обслуживание ML-моделей согласно концепции MLOps с помощью GitLab CI/CD, BentoML, Yatai, MLflow и Kubeflow. BentoML для CI в MLOPS При развертывании ML-модели необходимо учитывать следующие аспекты: как была построена модель...
Мы уже сравнивали MLflow и Kubeflow, которые позволяют управлять конвейерами машинного обучения. Продолжая эту важную для ML-инженера тему, сегодня рассмотрим 2 других MLOps-инструмента для оркестрации конвейеров Machine Learning: Vertex AI Pipelines и Apache AirFlow. Что такое Vertex AI Pipelines от Google Поскольку цель концепции MLOps в том, чтобы объединить разработку...
Data Mesh воплощает децентрализованный подход к построению распределенной архитектуры данных. При всех достоинствах этой модели, которая совмещает потоковую и пакетную парадигмы обработки данных, она еще довольно незрелая и имеет ряд недостатков. Одним из них является проблема с информационной безопасностью, что мы и рассмотрим далее для обучения ИТ-архитекторов и дата-инженеров. Безопасность...
Недавно мы рассматривали производительность ETL-конвейеров на Apache Spark с озером данных на MinIO. Сегодня разберем, чем это легковесное объектное хранилище отличается от распределенной файловой системы Apache Hadoop и как перейти на него с HDFS. Зачем переходить на MinIO Хотя HDFS до сих пор активно используется во многих Big Data проектах...
В связи с активным переходом от локальной ИТ-инфраструктуры в облачные полностью управляемые сервисы многие ИТ-архитекторы и дата-инженеры задумываются о замене собственного кластера Apache Kafka ее Cloud-альтернативами. Читайте, что общего у Apache Kafka с AWS Kinesis, чем они отличаются и какую платформу выбрать для потоковой передачи событий. Потоковая обработка событий с...
Сегодня заглянем под капот ИТ-инфраструктуры самой знаменитой франшизы быстрого питания. Как устроена унифицированная платформа потоковой обработки событий в McDonald’s на базе облачного полностью управляемого сервиса Apache Kafka в AWS и что гарантирует высокую доступность и надежность решения. Архитектурный дизайн Архитектуры, основанные на событиях, обеспечивают гибкость интеграции, масштабируемость и некоторые возможности...