Как устранить дубли в датасете: 5 методов для разработчика Apache Spark

На практике каждый аналитик Big Data и Data Scientist часто сталкивается с удалением дублирующихся значений в датасете. Поэтому, чтобы добавить в наши курсы по Apache Spark еще больше полезных примеров, сегодня рассмотрим 5 простых способов решения этой востребованной задачи. Читайте далее, чем distinct() отличается от dropDuplicates(), а reduceByKey() - от...

Как упростить работу с DWH и Data Lake: DBT + Apache Spark в AWS

Сегодня рассмотрим, что такое Data Build Tool, как этот ETL-инструмент связан с корпоративным хранилищем и озером данных, а также чем полезен дата-инженеру. В качестве практического примера разберем кейс подключения DBT к Apache Spark, чтобы преобразовать данные в таблице Spark SQL на Amazon Glue со схемой поверх набора файлов в AWS...

Как вести мониторинг финансовых транзакций в реальном времени с Apache Kafka и Spark в Delta Lake: пример аналитики больших данных

Сегодня рассмотрим пример построения системы аналитики больших данных для мониторинга финансовых транзакций в реальном времени на базе облачного Delta Lake и конвейера распределенных приложений Apache Kafka, Spark Structured Streaming и других технологий Big Data. Читайте далее о преимуществах облачного Delta Lake от Databricks над традиционным Data Lake. Постановка задачи: финансовая...

Что такое SnappyData (TIBCO ComputeDB) и при чем здесь Apache Spark

Недавно мы уже упоминали о некоторых продуктах на базе Apache Spark. Продолжая обучение основам Big Data, сегодня рассмотрим, что такое SnappyData или TIBCO ComputeDB и как это связано с популярным фреймворком разработки распределенных приложений аналитики больших данных. Кому и зачем нужны дополнительные решения поверх Apache Spark При всей популярности Apache Spark,...

Что такое бакетирование таблиц в Apache Spark SQL и как это улучшает аналитику больших данных

Сегодня поговорим про бакетирование таблиц в Apache Spark для оптимизации производительности заданий и снижения затрат на кластер при их выполнении. Читайте далее, что такое Bucketing в Spark SQL и как это предотвращает операции перетасовки в приложениях аналитики больших данных. Что такое Bucketing и зачем это нужно в Big Data Бакетирование...

Быстрая OLAP-аналитика больших данных в Delta Lake c Apache Spark SQL и Presto

В этой статье рассмотрим, как сделать SQL-запросы к колоночному хранилищу больших данных с поддержкой ACID-транзакций Delta Lake еще быстрее с помощью Apache Presto. Читайте далее про синергию совместного использования Apache Spark и Presto в Delta Lake для ускорения OLAP-процессов при работе с Big Data. Еще раз об OLAP: схема звезды...

Ускоряем конвейеры Apache Spark: 3 простых способа

Сегодня рассмотрим несколько простых способов ускорить обработку больших данных в рамках конвейера задач Apache Spark. Читайте далее про важность тщательной оценки входных и выходных данных, рандомизацию рабочей нагрузки Big Data кластера и замену JOIN-операций оконными функциями. Оптимизируй это: почему конвейеры аналитической обработки больших данных с Apache Spark замедляются Обычно со...

Stateful-проблемы JOIN-операций в Apache Spark Structured Streaming и их решения

Недавно мы уже рассматривали выполнение Join-операций в Apache Spark SQL. Сегодня поговорим про особенности потокового соединения в модуле Structured Streaming этого популярного фреймворка аналитики больших данных. Читайте далее, в чем специфика внешних и внутренних соединений потоков Big Data в Apache Spark Structured Streaming, а также как и зачем Inner/Outer Join...

Безопасность + надежность: чем хорош транзакционный протокол фиксации Spark-заданий от Databricks

Продолжая разговор про фиксацию заданий Apache Spark при работе с облачными хранилищами больших данных, сегодня подробнее рассмотрим, насколько эффективны commit-протоколы экосистемы Hadoop, предоставляемые по умолчанию, и почему известный разработчик Big Data решений, компания Databricks, разработала собственный алгоритм. Читайте далее про сравнение протоколов фиксации заданий в Spark-приложениях: результаты оценки производительности и...

Сложности перехода: от локальных Hadoop-кластеров к облачным объектным хранилищам для приложений Apache Spark

Сегодня поговорим про особенности транзакций в Apache Spark, что такое фиксация заданий в этом Big Data фреймворке, как она связано с протоколами экосистемы Hadoop и чем это ограничивает переход в облако с локального кластера. Читайте далее, как найти компромисс между безопасностью и высокой производительностью, а также чем облачные хранилища отличаются...

Поиск по сайту