Как решить задачу классификации в PySpark

PySpark позволяет работать не только с большими данными (Big data), но и создавать модели машинного обучения (Machine Learning). Сегодня мы расскажем вам о модуле ML и покажем, как обучить модель Machine Learning для решения задачи классификации. Читайте у нас: подготовка данных, применение логистической регрессии, а также использование метрик качеств в...

Что такое PySpark SQL и как он работает: несколько примеров

В прошлый раз мы говорили о том, как установить PySpark в Google Colab, а также скачали датасет с помощью Kaggle API. Сегодня на примере этого датасета покажем, как применять операции SQL в PySpark в рамках анализа Big Data. Читайте далее про вывод статистической информации, фильтрацию, группировку и агрегирование больших данных...

Как связаны DataOps, цифровизация и аналитика больших данных: разбираем на примере отечественного Big Data продукта — Arenadata Analytic Workspace

Продолжая разговор про Apache Zeppelin, сегодня рассмотрим, как на его основе ведущий разработчик отечественных Big Data решений, компания «Аренадата Софтвер», построила самообслуживаемый сервис (self-service) Data Science и BI-аналитики – Arenadata Analytic Workspace. Читайте далее, как развернуть «с нуля» рабочее место дата-аналитика, где место этого программного решения в конвейере DataOps и при...

Как подключить PySpark и Kaggle в Google Colab

Недавно мы рассказывали, что такое PySpark. Сегодня рассмотрим, как подключить PySpark в Google Colab, а также как скачать датасет из Kaggle прямо в Google Colab, без непосредственной загрузки программ и датасетов на локальный компьютер. Google Colab Google Colab — выполняемый документ, который позволяет писать, запускать и делиться своим Python-кодом через...

Чем Apache Zeppelin лучше Jupyter Notebook для интерактивной аналитики Big Data: 4 ключевых преимущества

В этой статье мы рассмотрим, что такое Apache Zeppelin, как он полезен для интерактивной аналитики и визуализации больших данных (Big Data), а также чем этот инструмент отличается от популярного среди Data Scientist’ов и Python-разработчиков Jupyter Notebook. Что такое Apache Zeppelin и чем он полезен Data Scientist’у Начнем с определения: Apache...

Как управлять собственным Data Flow на Apache Spark с NiFi через Livy: разбираемся с процессорами и контроллерами

Apache Livy полезен не только при организации конвейеров обработки больших данных (Big Data pipelines) на Spark и Airflow, о чем мы рассказывали здесь. Сегодня рассмотрим, как организовать запланированный запуск пакетных Spark-заданий из Apache NiFi через REST-API Livy, с какими проблемами можно при этом столкнуться и что поможет их решить. Что...

Введение в PySpark

Python считается из основных языков программирования в областях Data Science и Big Data, поэтому не удивительно, что Apache Spark предлагает интерфейс и для него. Data Scientist’ы, которые знают Python, могут запросто производить параллельные вычисления с PySpark. Читайте в нашей статье об инициализации Spark-приложения в Python, различии между Pandas и PySpark,...

Поиск по сайту