Постоянно добавляя в наши курсы Apache Kafka для разработчиков интересные и практические примеры, сегодня мы разберем кейс тревел-площадки Trainline, которая агрегирует данные от 270 железнодорожных и автобусных компаний в 45 странах, предлагая выгодные билеты на европейские поезда и автобусы. Читайте далее, почему пакетный режим работы озера данных перестал отвечать требованиям...
Дополняя наши курсы дата-инженеров полезными примерами, сегодня рассмотрим, как упростить разработку и мониторинг ETL-конвейеров с помощью дополнительных технологий Big Data, совместимых с Apache Spark. Читайте далее, когда и зачем инженеру данных пригодятся SaaS-продукт Prophecy.io, движок StreamSets Transformer и REST-интерфейс Apache Livy, а также как все они связаны со Spark. 3...
Чтобы дополнить наши курсы по Spark для разработчиков распределенных приложений и инженеров данных практическими примерами, сегодня рассмотрим кейс американской ИТ-компании ThousandEyes, которая разрабатывает программное обеспечение для анализа производительности локальных и глобальных сетей. Читайте далее, как создать надежный конвейер и устойчивое озеро данных (Data Lake) для быстрой аналитики Big Data в...
Поскольку курсы инженеров Big Data предполагают практическое обучение на реальных кейсах, сегодня поговорим про тестирование конвейеров обработки и аналитики больших данных и разберем несколько прикладных примеров для компонентов экосистемы Apache Hadoop. Читайте далее про проверку работоспособности, а также поиск ошибок в Spark-заданиях и DAG-цепочках Airflow. Конвейер для конвейера: сложности тестирования...
Сегодня продолжим разбираться с реализацией CDC-подхода в современных Big Data решениях и погрузимся в Databricks Delta Lake – облачный уровень хранения и аналитики больших данных с поддержкой ACID-транзакций. Читайте далее про переход от ночных ETL-пакетов с Informatica к быстрому обновлению данных в Amazon S3 на конвейере Spark и Kafka. Возможности...
В рамках обучения инженеров больших данных, вчера мы рассказывали о новой версии Apache AirFlow 2.0, вышедшей в декабре 2020 года. Сегодня рассмотрим особенности перехода на этот релиз: в чем сложности миграции и как их решить. Читайте далее про сохранение кастомизированных настроек, тонкости работы с базой метаданных и конфигурацию для развертывания...
В конце 2020 года вышел мажорный релиз Apache AirFlow, основные фишки которого мы рассмотрим в этой статье. Читайте далее про 10 главных обновлений Apache AirFlow 2.0, благодаря которым этот DataOps-инструмент для пакетных заданий обработки Big Data стал еще лучше. 10 главных обновлений Apache AirFlow 2.0 Напомним, разработанный в 2014 году...
В этой статье разберем ключевые характеристики идеального конвейера обработки больших данных. Читайте далее, чем отличается Big Data Pipeline, а также какие приемы и технологии помогут инженеру данных спроектировать и реализовать его наиболее эффективным образом. В качестве практического примера рассмотрим кейс британской компании кибербезопасности Panaseer, которой удалось в 10 раз сократить...
Сегодня поговорим про ETL-процессы в мире Big Data на примере построения непрерывного конвейера поставки больших данных о транзакциях для сервисов машинного обучения. Читайте далее, из чего состоит типичная архитектура такой системы на базе Apache Kafka, Spark, HBase и Hive, а также почему большинство ETL-инструментов не подходят для потоковой передачи событий...
Продолжая разговор про обучение Apache Spark для инженеров данных на практических примерах, сегодня разберем, как организовать интеграцию этого Big Data фреймворка с MPP-СУБД Greenplum. В этой статье мы расскажем о коннекторе Greenplum-Spark, который позволяет эффективно связывать эти средства работы с большими данными, выстраивая аналитический конвейер их обработки (data pipeline). Типовые...