Greenplum vs Clickhouse: сравнение аналитических СУБД для Big Data

Сходства и различия популярных реляционных аналитических СУБД с открытым исходным кодом: что общего у Greenplum с ClickHouse, чем они отличаются, что и когда выбирать. Greenplum и Clickhouse: обзор возможностей для аналитики больших данных Обе СУБД являются реляционными и относятся к классу OLAP-систем, т.е. ориентированы на аналитические варианты использования, т.е. чтение...

Вместо Tableau и Power BI: DataLens от Яндекса на примере внедрения в KazanExpress

Недавно мы писали про Yandex Managed Service for Apache Kafka. Продолжая тему импортозамещения, сегодня рассмотрим, как этот и другие полностью управляемые сервисы Яндекса помогли отечественному маркетплейсу KazanExpress построить эффективное BI-решение. Что такое Yandex DataLens и как он способен заменить зарубежные системы бизнес-аналитики типа Tableau с Power BI, а также открытый Apache...

Аналитика больших данных в реальном времени с Apache Kafka, Spark, ClickHouse и S3

Практический пример аналитики больших данных в реальном времени с Apache Spark, Kafka, ClickHouse и AWS S3: возможности, архитектура, также специально для дата-инженеров и разработчиков распределенных приложений рассмотрим, сколько времени нужно для разрешения каждого вызова API в определенном временном диапазоне. Анализ событий пользовательского поведения в реальном времени Основным продуктом международной ИТ-компании...

Платформа аналитики больших данных Леруа Мерлен: потоковый CDC с Apache Kafka, NiFi, AirFlow и Flink в DWH на Greenplum

Чтобы добавить в наши курсы для дата-инженеров по технологиям Apache Kafka, Spark, AirFlow, NiFi, Flink и Greenplum, еще больше практических примеров, сегодня разберем кейс ритейлера Леруа Мерлен. Читайте далее, как сотрудники российского отделения этой международной компании интегрировали в единую платформу более 350 реляционных СУБД и NoSQL-источников с помощью CDC-подхода на...

Тонкости интеграции Apache Kafka с Pinot для аналитики больших данных в реальном времени

Продолжая вчерашний разговор про потоковую аналитику больших данных на Apache Kafka и Pinot, сегодня рассмотрим особенности интеграции этих систем. Читайте далее, как входные данные Kafka разделяются, реплицируются и индексируются в Pinot, каким образом выполняется обработка данных через распределенные SQL-запросы. Также разберем, почему управление памятью серверов Pinot, потребляющих данные из Kafka,...

Микросервисная real-time аналитика больших данных: потоковый OLAP на Apache Kafka, Pinot, Debezium и CDC

В этой статье разберем несколько популярных сценариев потоковой аналитики больших данных на Kafka, CDC-платформе Debezium и быстром OLAP-хранилище Apache Pinot. Читайте далее, почему все эти Big Data технологии отлично подходят для консолидации и интеграции данных из разных источников в реальном времени, включая аналитический аудит изменений, отслеживание событий в распределенном домене...

Заменит ли Apache Kafka прочие СУБД в мире Big Data: за и против

В этой статье мы поговорим про возможность нехарактерного использования Apache Kafka: не как распределенной стримминговой платформы или брокера сообщений, а в виде базы данных. Читайте далее, как Apache Kafka дополняет другие СУБД, не заменяя их полностью, почему такой вариант использования возможен в Big Data и когда он не совсем корректен....

5 ключевых достоинств и 3 главных недостатка ELK-стека: разбираемся с Elasticsearch, Logstash и Kibana на реальных Big Data кейсах

Сегодня рассмотрим основные преимущества и недостатки ELK-стека. Читайте в этой статье, чем хороши Elasticsearch с Logsatsh и Kibana, а также каковы их основные недостатки и ограничения для использования в реальных Big Data проектах. Также мы собрали для вас несколько практических примеров, где и как используется Elasticsearch в интернет-магазинах, банках и...

Что не так с ClickHouse: 10 главных недостатков

Вчера мы разобрали, чем хорош ClickHouse и почему. Сегодня рассмотрим обратную сторону скорости, расширяемости и других преимуществ этой аналитической СУБД от Яндекса для обработки запросов по структурированным большим данным в реальном времени. Также читайте в нашей статье, как обойти недостатки и ограничения этой системы или понизить степень их влияния на...

За что все его так любят: ТОП-5 достоинств ClickHouse для Big Data

Сегодня рассмотрим основные преимущества ClickHouse – аналитической СУБД от Яндекса для обработки запросов по структурированным большим данным в реальном времени. Читайте в нашей статье, чем еще хорош Кликхаус, кроме высокой скорости, и почему эту систему так любят аналитики, разработчики и администраторы Big Data. Чем хорош ClickHouse: главные преимущества Напомним, основным...

Поиск по сайту