Синергия Apache Airflow и Ray для MLOps-конвейеров: инженерия Data Science

MLOps и построение конвейеров машинного обучения – одни из самых актуальных задач современной Data Science. Сегодня рассмотрим, чем совместное использование Apache Airflow и Ray полезно для дата-инженера и ML-разработчика. Читайте далее про кластерное развертывание Python-кода ML-моделей и упрощение ETL-процессов с Apache Airflow и Ray. Apache AirFlow для ML: возможности и...

Как устроен PXF Greenplum: архитектура и принципы работы

Специально для дата-инженеров, разработчиков OLAP-конвейеров и архитекторов DWH на MPP-СУБД Greenplum и Arenadata DB сегодня рассмотрим, что представляет собой PXF, из каких компонентов он состоит и как они взаимодействуют друг с другом, чтобы обеспечить параллельный высокопроизводительный доступ к данным и объединенную обработку запросов к разнородным источникам. Что PXF и зачем...

Apache Spark 3.2.0 и Scala 3.0: что нового?

В начале сентября 2021 года вышел 3-й релиз языка программирования Scala, который разработчики называют полностью переработанным из-за модернизации системы типов и добавления новых функций. Текущая версия Apache Spark 3.2.0, выпущенная месяцем позже, поддерживает Scala 2.13 и 3.0 с ограничением некоторых возможностей. Читайте далее, как разработчикам распределенных Spark-приложений писать задания на...

Базовые операции в Hbase: основы Big Data для начинающих

В этой статье мы поговорим про основные базовые операции распределенной СУБД Hbase. Также рассмотрим применение этих операций к данным, хранящимся в этой СУБД на практических примерах. Читайте далее про базовые CRUD-операции в Hbase и их особенности. Основные CRUD-операции в распределенной СУБД Hbase HBase - это распределенная NoSQL столбцово-ориентированная (данные представлены...

Как передать данные из GridDB в Apache Kafka через JDBC-коннектор

Добавляя в наши курсы по Apache Kafka еще больше полезных кейсов, сегодня рассмотрим пример интеграции этой распределенной платформы потоковой передачи событий с масштабируемой key-value СУБД GridDB через JDBC-коннекторы Kafka Connect. Apache Kafka как источник данных: source-коннектор JDBC Apache Kafka часто используется в качестве источника или приемника данных для аналитической обработки...

Соединения и хуки в Apache Airflow: разбираем на примере SQLite

В прошлый раз мы говорили о способе взаимодействия задач между собой в Apache Airflow. Сегодня поговорим о таких сущностях, как соединение (connections) и хуки (hooks). Читайте в этой статье: что такое хук и соединение, как создать и скачать соединение, а также как подключить базу данных в Airflow. Что такое связи...

Apache Flink 1.14: что нового?

29 сентября 2021 года вышла новая версия популярного Big Data фреймворка Apache Flink. Мы сделали краткий обзор главных улучшений свежего релиза 1.14 общедоступного дистрибутива, а также его коммерциализации в Ververica Platform 2.6. Узнайте, как потоковая обработка и аналитики больших данных с Apache Flink станет еще проще и эффективнее. Исправление ошибок...

От Cassandra к Google Cloud Spanner: опыт Uber

Сегодня рассмотрим, как Uber эффективно обрабатывает миллионы запросов на поездки c помощью технологий надежного хранения и быстрой аналитики больших данных. Вас ждет краткий ликбез по системе геопространственной индексации H3 и рассказ о том, почему компания заменила NoSQL-Cassandra c компонентом Saga интеграционного фреймворка Camel на геораспределенную облачную NewSQL-СУБД Spanner от Google....

Из CSV-файла в GridDB: ETL-конвейер на Apache NiFi для анализа данных временных рядов

Чтобы добавить в наши курсы для дата-инженеров еще больше полезных примеров, сегодня рассмотрим, как построить конвейер преобразования CSV-файлов и загрузить данные в масштабируемую NoSQL-СУБД GridDB с помощью Apache NiFi. Краткий ликбез по GridDB и Apache NiFi в кейсе построения ML-системы для анализа данных временных рядов. Анализ данных временных рядов c...

Проблема вызовов REST API в Apache Spark и способы ее решения

В этой статье для разработчиков Apache Spark разберем, что не так с вызовами REST API в этом фреймворке, и как решить эту проблему с помощью готовых библиотек или создания собственных UDF-функций на PySpark и не только. Для наглядности рассмотрим практический пример вызова REST API на PySpark с библиотекой Rest Data...

Поиск по сайту