Как не наступить на 10 главных граблей Apache Airflow в production: разбираемся на практических примерах

Мы уже рассказывали про основные достоинства и недостатки Apache Airflow, с которыми чаще всего можно столкнуться при практическом использовании этого оркестратора конвейеров обработки больших данных (Big Data). Сегодня рассмотрим некоторые специфические ограничения, характерные для этой open-source платформы и способы решения этих проблем на реальных примерах. Все по плану: 5 особенностей...

Что под капотом Apache Livy: принципы и особенности работы со Spark

Вчера мы рассказывали про особенности совместного использования Apache Spark с Airflow и достоинства подключения Apache Livy к этой комбинации популярных Big Data фреймворков. Сегодня рассмотрим подробнее, как работает Apache Livy, а также за счет чего этот гибкий API обеспечивает удобство работы с Python-кодом и общие Spark Context’ы для разных операторов...

Зачем вам Apache Livy или как скрестить Spark с Airflow для эффективных Big Data pipeline’ов

Сегодня поговорим про построение конвейеров обработки данных (data pipeline) на примере совместного использования Apache Spark с Airflow и рассмотрим типовые проблемы этой комбинации. Читайте в нашей статье, как автоматизировать задачи пакетной и потоковой обработки больших данных (Big Data) с помощью гибкого REST-API Apache Livy, включая работу с Python-кодом, отказоустойчивость и...

Что такое Airflow Executor: 5 исполнителей задач и 2 их основных ограничения

Недавно мы рассказывали про Airflow Kubernetes Executor, который позволяет выполнять задачи DAG-графа Эйрфлоу в среде Kubernetes, развертывая Docker-контейнер на отдельном пользовательском модуле (pod). Сегодня рассмотрим, какие еще есть исполнители задач в Apache Airflow, как они используются при автоматизации batch-процессов обработки больших данных и с какими проблемами можно столкнуться при их...

AirFlow KubernetesExecutor: 3 способа запуска и 4 главных плюса для DevOps-инженера

Эффективное обучение AirFlow, также как курсы по Spark, Hadoop, Kafka и другим технологиям больших данных (Big Data) также включают нюансы интеграции этого фреймворка с другими средами. Например, вчера мы рассматривали преимущества DevOps-подхода к разработке Data Flow на примере взаимосвязи Apache Airflow с Kubernetes посредством специальных операторов. Продолжая эту тему, сегодня...

Что такое AirFlow Kubernetes Operator и как это работает: обзор решений от K8s и Google

Вчера мы рассказали, почему запускать Airflow на Kubernetes – это эффективно и выгодно для всех участников batch-процессов с большими данными (Big Data): разработчиков Data Flow, Data Scientist’ов, аналитиков и инженеров. Сегодня рассмотрим, что такое Airflow Kubernetes Operator и чем он отличается от подобной разработки компании Google. Как работает AirFlow Kubernetes...

AirFlow на Kubernetes: DevOps-подход к автоматизации batch-процессов в Big Data

Чтобы обучение Airflow было максимально приближенным к практике, сегодня мы поговорим про особенности реального внедрения этого фреймворка для разработки, планирования и мониторинга пакетных процессов обработки больших данных (Big Data) с учетом современного DevOps-подхода. Читайте в нашей статье, зачем вообще нужна связка Apache Эйрфлоу с Kubernetes и как это реализовать технически....

7 достоинств и 5 недостатков Apache AirFlow

Продолжая говорить про обучение Airflow, сегодня мы рассмотрим ключевые преимущества и основные проблемы этой библиотеки для автоматизации часто повторяющихся batch-задач обработки больших данных (Big Data). Также мы собрали для вас пару полезных советов, как обойти некоторые ограничения Airflow на примере кейсов из Mail.ru, IVI и АльфаСтрахования. Чем хорош Apache AirFlow:...

ETL для пакетов Big Data: 3 примера использования Apache AirFlow

В этой статье мы поговорим про Apache AirFlow - эффективный инструмент для пакетных ETL-задач при работе с большими данными (Big Data): что это такое, как работает и чем полезен для инженера данных (Data Engineer). Также рассмотрим несколько практических примеров реального использования этой библиотеки для разработки, планирования и мониторинга batch-процессов. Что...

Apache Airflow

В этой статье я бы хотел рассказать об основных концепциях Airflow и как с ним работать. Что такое Airflow? Airflow – это open-source оркестратор для управления процессами загрузки и обработки данных. Если у вас есть большое количество задач, запускаемых на cron, особенно, если между ними есть зависимости, то Airflow может...

Поиск по сайту