В этой статье для дата-инженеров рассмотрим кейс компании PayPal, которая переводит свои аналитические рабочие нагрузки из локального кластера Apache Spark в Google Cloud Processing. Читайте далее, чем это решение оказалось лучше выполнения Spark-заданий в кластере DataProc с использованием данных BigQuery и облачного хранилища Google (GCS, Google Cloud Storage) для потоковой...
Сегодня рассмотрим пару кейсов по использованию Apache Flink в качестве основного фреймворка пакетной и потоковой аналитики больших данных. Читайте далее, как фото-хостинг Pinterest построил вокруг Flink собственную инфраструктуру работы с изображениями в реальном времени, а китайский ритейл-гигант Alibaba Group успешно обрабатывал 7 ТБ в секунду во время глобального дня шопинга....
Продвигая наш новый курс по графовым алгоритмам на больших данных, сегодня рассмотрим, почему концепция графов сегодня так востребована в Big Data и Machine Learning. Вас ждет краткий ликбез по модулю GraphX в Apache Spark и его отличия от API GraphFrames, а также особенности кластерной обработки и сохранения данных графа свойств....
Появившись более 10 лет назад, Apache Hive до сих пор является самым популярным инструментом стека SQL-on-Hadoop и активно используется для аналитики больших данных. Однако, технологии Big Data постоянно развиваются: Spark все чаще заменяет Hadoop MapReduce, а вместо HDFS все чаще используются объектные облачные хранилища: AWS S3, Delta Lake, Apache Ozone...
Продвигая наши курсы по Greenplum и Arenadata DB, сегодня рассмотрим пару полезных лайфхаков, как избежать избыточного потребления памяти, настроив конфигурационные параметры операционной системы хоста. Читайте далее, почему не стоит задавать слишком большой размер страниц виртуальной памяти, зачем администратору контролировать количество spill-файлов и как в этом помогает утилита gp_toolkit. Операционная система...
Недавно мы рассказывали про KafkaJS – клиент Apache Kafka для Node.js, который отличается небольшим размером и простым развертыванием с удобным API. Сегодня рассмотрим еще пару полезных инструментов визуализации данных о Kafka-кластере на базе KafkaJS и Prometheus. Читайте далее, что такое FlowKat и Monokl, а также зачем они нужны дата-инженеру, разработчику...
В этой статье для разработчиков Spark-приложений и дата-аналитиков рассмотрим новый оптимизатор этого фреймворка, Radiant. Он основан на SQL-оптимизаторе Catalyst и представляет собой open-source проект от энтузиастов сообщества Apache Spark. Читайте далее, чем хорош Spark-Radiant и как использовать его для оптимизации SQL-запросов при аналитике больших данных. Что такое SQL-оптимизатор Spark-Radiant и...
В рамках обучения дата-инженеров сегодня заглянем под капот системы Cloudera Flow Management, которая является частью платформы Cloudera DataFlow и основана на Apache NiFi. Вас ждет разбор основных концепций жизненного цикла потоковой разработки и их реализация в Apache NiFi с практическими примерами и рекомендациями по применению. Что такое Cloudera Flow Management...
Когда имеются графы (dags), зависимые от других, то лучше всего объединить их в один или использовать TaskGroup, о котором говорили в прошлой статье. Но если по каким-то причинам сделать это не удается, то Apache Airflow предоставляет различные способы запуска графа внутри другого. Одним из таких является TriggerDagRunOperator. В этой статье...
Сегодня рассмотрим, что такое KafkaJS, как это связано с Apache Kafka и JavaScript, в чем преимущества этой технологии и как разработчику распределенных приложений потоковой аналитики больших данных использовать ее на практике. Также вас ждет краткий ликбез по Node.js и примеры разработки KafkaJS-приложения. Краткий ликбез по Node.js Важными достоинствами архитектуры потоковой передачи...