Можно ли сочетать OLAP и OLTP-нагрузки в едином хранилище и как это сделать: гибридная транзакционно-аналитическая обработка в базах данных, возможности и проблемы этой архитектуры. Что такое HTAP Исторически хранилища данных принято делить на OLAP и OLTP с учетом их оптимизации для аналитических и транзакционных нагрузок. OLTP-системы (Online Transaction Processing) оптимизированы...
Чем синхронная вставка в ClickHouse отличается от асинхронной и как это настроить: лучшие практики и риски загрузки данных в колоночное хранилище. Синхронная вставка данных в ClickHouse Хотя скорость вставки данных в ClickHouse зависит от множества факторов, ее можно ускорить за счет асинхронных вставок, если предварительное пакетирование на стороне клиента невозможно....
Как именно формат, сортировка, сжатие и интерфейс передачи данных в ClickHouse влияют на скорость операций загрузки: бенчмаркинговое сравнение от разработчиков колоночной СУБД. В каком формате данные быстрее всего вставляются в ClickHouse Продолжая недавний разговор про вставку данных в ClickHouse, сегодня рассмотрим, ключевые факторы, которые особенно сильно влияют на скорость загрузки...
Почему в одной организации возникает рассогласование данных, чем опасна такая рассинхронизация, как ее обнаружить и устранить: подходы и решения для повышения качества данных. Что такое data silos и как найти локальные «болота данных» Рассогласование в данных возникает при разной логике обработки одной и той же информации. Это мешает принимать объективные...
Как выполняется вставка данных в ClickHouse, от чего зависит ее скорость и каким образом ее повысить: последовательность операций загрузки и ее оптимизации. От чего зависит скорость вставки данных в ClickHouse Поскольку ClickHouse часто используется для построения хранилищ или витрин данных, скорость загрузки данных в эту базу очень важна. Хотя на...
Денормализация таблиц, оптимизация SQL-запросов, словари вместо измерений и AggregatingMergeTree-движок с инкрементными матпредставлениями для приема измененных данных из PostgreSQL в ClickHouse. Оптимизация SQL-запросов Хотя передача изменений из PostgreSQL в ClickHouse может сопровождаться дублированием или потерями данных, эти проблемы решаемы, о чем мы рассказывали здесь и здесь. Однако, репликация данных из реляционной...
Чем ML-сценарии работы с данными отличаются от типовых аналитических нагрузок и почему колоночные форматы не справляются с ними: сложности Parquet и ORC в хранении данных для машинного обучения. Почему колоночные форматы не справляются со всеми ML-сценариями Хотя колоночный формат хранения данных хорошо подходит для многих современных сценариев, таких как машинное...
Как Apache Kafka реализует компромиссы CAP-теоремы и при чем здесь чистые выборы лидера: проблемы целостности, доступности и устойчивости в распределенной системе с репликацией данных. CAP-теорема в кластере Apache Kafka При публикации сообщений в Apache Kafka, развернутой в кластере из нескольких узлов, данные сохраняются в брокере-лидере раздела, а затем реплицируются по...
Почему ключи сортировки в ClickHouse могут стать причиной появления дублей или пропусков при CDC-передаче изменений из PostgreSQL и как этого избежать: особенности логической репликации из транзакционной базы данных в аналитическую. Влияние ключей сортировки на CDC-передачу изменений из PostgreSQL в ClickHouse Продолжая разбираться с дублированием данных при передачи изменений из PostgreSQL...
Почему табличный движок ReplacingMergeTree в PeerDB и ClickPipes не избавит от дублей при передаче измененных данных из PostgreSQL в ClickHouse и можно ли полностью выполнить дедупликацию с помощью модификатора FINAL, политики строк, обновляемых представлений или агрегатных и оконных функций. Как движок ReplacingMergeTree допускает дубли при импорте изменений из PostgreSQL в...