В рамках курсов по Apache Hadoop для дата-аналитиков и инженеров данных сегодня рассмотрим пару практических примеров работы с популярным SQL-on-Hadoop инструментом этой экосистемы. Читайте далее, как настроить соединение удаленного сервера Apache Hive к Spark-приложению через JDBC и решить проблему запроса таблицы HBase в Hive вместо повторной репликации данных. Подключение удаленного...
Сегодня разберем кейс компании Renault по масштабированию своей цифровой платформы и снижению затрат с помощью BigQuery и Apache Spark на Google Dataproc. Цифровизация в автомобильной промышленности: конвейер сбора и аналитики больших данных с производства средствами Google сервисов и снижение затрат на облако в 2 раза через изменение конфигурации Spark SQL....
Сегодня в рамках обучения дата-аналитиков и разработчиков Spark-приложений, рассмотрим еще несколько особенностей этого фреймворка. Почему count() работает по-разному для RDD и DataFrame, как отличается уровень хранения при применении метода cache() для этих структур, когда использовать SortWithinPartitions() вместо sort(), а также парочка тонкостей обработки Parquet-таблиц в Spark SQL и кэширование метаданных...
Чтобы дополнить наши курсы по Kafka и Spark интересными примерами, сегодня рассмотрим практический кейс разработки микросервисного конвейера машинного обучения на этих фреймворках. Читайте далее, зачем выносить ML-компонент в отдельное Python-приложение от остальной части Big Data pipeline’а, и как Docker поддерживает эту концепцию микросервисного подхода. Постановка задачи и компоненты микросервисного ML-конвейера...
В июле 2021 года «Аренадата Софтвер», российская ИТ-компания разработчик отечественных решений для хранения и аналитики больших данных, представила минорный релиз корпоративного дистрибутива на базе Apache Hadoop — Arenadata Hadoop 2.1.4. Главными фишками этого выпуска стало наличие 3-й версии Apache Spark и External PostgreSQL для Hive MetaStore. Сегодня рассмотрим, что именно...
Сегодня в рамках обучения разработчиков Apache Spark и дата-аналитиков, поговорим про детерминированность UDF-функций и особенности их обработки оптимизатором SQL-запросов Catalyst. На практических примерах рассмотрим, как оптимизатор Spark SQL обрабатывает недетерминированные выражения и зачем кэшировать промежуточные результаты, чтобы гарантированно получить корректный выход. Еще раз про детерминированность функций и планы выполнения...
Чтобы добавить в наши курсы по Spark еще больше практических кейсов, сегодня ответим на самые частые вопросы относительно масштабирования распределенных приложений, написанных с помощью этого фреймворка. Читайте далее о пользе динамического распределения, оптимальном выделении ресурсов на драйверы и исполнители, а также каковы тонкости управления разделами в Apache Spark. Лебедь, рак...
Обучая разработчиков Big Data, сегодня рассмотрим, почему в распределенных приложениях Apache Spark случаются OOM-ошибки. Читайте далее, как работает сборка мусора JVM в Spark-приложениях, почему из-за нее случаются утечки памяти и что можно сделать на уровне драйвера и исполнителя для предупреждения OutOfMemoryError. Сборка мусора JVM и OOM-ошибки в Spark-приложениях На практике...
В этой статье по обучению Apache Spark рассмотрим, чем графический веб-интерфейс этого фреймворка полезен разработчику распределенных приложений. Читайте далее, где посмотреть кэшированные данные, визуализацию DAG, переменные среды, исполняемые SQL-запросы, а также прочие важные метрики кластерных вычислений и аналитики больших данных. 9 страниц Apache Spark UI Apache Spark предоставляет набор пользовательских...
Продвигая наши курсы по Apache Spark для разработчиков, сегодня рассмотрим пользовательские функции и особенности работы с ними в API SQL-модуле этого фреймворка. Читайте далее про идемпотентность UDF-функций и их влияние на распределение данных в кластере Apache Spark. Как устроены UDF в Apache Spark: краткий ликбез Пользовательские функции (User Defined Functions,...