Чем DevOps-инженер отличается от администратора Big Data и сисадмина

Несмотря на почти 20-летнюю историю термина «DevOps», даже в ИТ-среде до сих пор есть мнение, что все рабочие задачи этого девопс-инженера может выполнить рядовой системный администратор. Почему это не так и как обстоят дела с администрированием Big Data систем, читайте в нашей сегодняшней статье. Критерии и источники данных для сравнения...

Битва инженеров Big Data: DataOps vs DevOps – кто за что отвечает

Мы уже писали о происхождении термина DataOps, а также про методы и средства реализации этой концепции непрерывной интеграции данных между процессами, командами и системами в рамках data-driven company. Продолжая тему развития Agile-подходов в мире больших данных, сегодня рассмотрим, чем отличаются сферы ответственности DataOps- и DevOps-инженеров и почему оба этих специалиста...

Что такое DataOps: зачем Big Data свой DevOps с блокчейном и данными

DataOps (DATA Operations, датаопс), по аналогии с DevOps (DEVelopment Operations, девопс) — это концепция и набор практик непрерывной интеграции данных между процессами, командами и системами для повышения эффективности корпоративного управления или отраслевого взаимодействия за счет распределенного сбора, централизованной аналитики и гибкой политики доступа к информации с учетом ее конфиденциальности, ограничений на...

Почему каждый Data Scientist должен быть DevOps-инженером в Big Data

С точки зрения бизнеса DevOps (DEVelopment OPerations, девопс) можно рассматривать как углубление культуры Agile для управления процессами разработки и поставки программного обеспечения с помощью методов продуктивного командного взаимодействия и современных средств автоматизации. Сегодня мы поговорим о том, как эта методология используется в Big Data проектах, почему любой Data Scientist становится немного...