При том, что Apache Airflow сегодня считается главным инструментом дата-инженерии, он далеко не единственное средство оркестрации пакетных заданий и построения конвейеров обработки больших данных. В рамках продвижения наших курсов для инженеров Big Data, сегодня рассмотрим, что такое Apache Hop, чем это отличается от AirFlow и где использовать эту платформу, а...
В этой статье для дата-инженеров мы собрали лучшие практики построения масштабируемых конвейеров обработки данных, а также популярные рекомендации по проектированию ETL/ELT-процессов с Apache Spark, AirFlow и другими технологиями Big Data. Читайте далее, когда ELT лучше ETL и наоборот, чем хорош Apache Spark в конвейерах обработки Big Data, зачем нужен AirFlow,...
В предыдущей статье мы говорили о том, как начать работать с Apache Airflow. Сегодня пойдет речь о новом инструменте, появившемся в Airflow 2, — TaskFlow API. Он обеспечивает кросс-коммуникацию между задачами с помощью обычных функций Python. На примере ETL-конвейера мы объясним, как соорудить DAG на основе TaskFlow API, а также...
В этой статье для дата-инженеров рассмотрим, что такое Cloudera Flow Management и как это позволяет ускорить аналитику больших данных в кейсах информационной безопасности. Читайте далее о преимуществах SIEM-анализа, преобразования и распределения security-событий с помощью Apache NiFi и его легковесного агента MiNiFi для устройств интернета вещей (Internet Of Things, IoT). Что...
Инженерия данных нужна не только большим компаниям с крупными Big Data проектами. Сегодня рассмотрим, как Apache AirFlow повышает эффективность low-code фреймворка Zapier с помощью своего REST API и Amazon SQS. Также читайте далее об интеграции приложений без разработки кода и удаленный запуск Matillion-заданий в AWS с AirFlow. Low Code интеграция...
Чтобы добавить в курсы по Apache AirFlow еще больше полезных примеров, сегодня рассмотрим, как избежать дублирования кода при загрузке данных. Этот пример пригодится дата-инженерам в работе с ELT-процессами наполнения информацией корпоративных хранилищ и озер данных. Читайте про фреймворк динамической загрузки данных на базе конфигурационных YAML-файлов, DAG-фабрик и загрузчиков. Проблема дублирования...
Мы уже писали про преимущества разделения пакетов в Apache AirFlow 2.0. Сегодня рассмотрим, как открытый реестр Python-пакетов от компании Astronomer облегчает разработку конвейеров обработки данных, чем провайдеры отличаются от модулей и насколько удобно дата-инженеру всем этим пользоваться. От монолита к мульти-пакетной архитектуре в Apache Airflow 2.0 Напомним, во 2-ой версии...
Сегодня рассмотрим, как упростить работу дата-инженера в Apache AirFlow, автоматизировав процесс создания DAG’ов из одного или нескольких Python-файлов. На практических примерах разберем достоинства и недостатки 5 способов динамической генерации, а также особенности масштабирования Big Data pipeline’ов. Что такое динамическая генерация DAG в Apache Airflow и зачем она нужна В статье...
В рамках практического обучения дата-инженеров сегодня мы собрали 10 лучших практик проектирования конвейеров обработки данных в рамках Apache AirFlow, которые касаются не только особенностей этого фреймворка. Также рассмотрим, какие принципы разработки ПО особенно полезны для инженерии больших данных с Apache AirFlow. ТОП-10 рекомендаций дата-инженеру для настройки Apache Airflow и не...
Запуская наш новый курс по Эксплуатация Apache NIFI, сегодня рассмотрим 3 популярных вопроса про этот Big Data фреймворк с комментариями компании Cloudera. Читайте далее, может ли NiFi заменить пакетные ETL-оркестраторы, как использовать REST API для управления потоками данных в этом фреймворке, а также где настраивать политики управления доступом в многопользовательской...