Как хранить большие данных в Greenplum: ТОП-15 рекомендаций

Продвигая наш новый курс «Greenplum для инженеров данных», сегодня мы рассмотрим особенности организации таблиц в этой MPP-СУБД, типы данных и оптимальное расположение столбцов. Читайте далее, чем heap storage отличается от append-optimized, когда выбирать колоночную, а когда – строковую модель хранения данных для таблицы, почему BIGINT с TIMESTAMP следует размещать перед...

Как упростить работу с DWH и Data Lake: DBT + Apache Spark в AWS

Сегодня рассмотрим, что такое Data Build Tool, как этот ETL-инструмент связан с корпоративным хранилищем и озером данных, а также чем полезен дата-инженеру. В качестве практического примера разберем кейс подключения DBT к Apache Spark, чтобы преобразовать данные в таблице Spark SQL на Amazon Glue со схемой поверх набора файлов в AWS...

Быстрая OLAP-аналитика больших данных в Delta Lake c Apache Spark SQL и Presto

В этой статье рассмотрим, как сделать SQL-запросы к колоночному хранилищу больших данных с поддержкой ACID-транзакций Delta Lake еще быстрее с помощью Apache Presto. Читайте далее про синергию совместного использования Apache Spark и Presto в Delta Lake для ускорения OLAP-процессов при работе с Big Data. Еще раз об OLAP: схема звезды...

Как опередить спрос на модные новинки с облачными технологиями Big Data: кейс компании Boden по Apache Kafka и Snowflake

Интерактивная аналитика больших данных - одно из самых востребованных и коммерциализированных приложений для технологий Big Data. В этой статье мы рассмотрим, как крупный британский ритейлер запустил цифровую трансформацию своей ИТ-архитектуры, уходя от традиционного DWH с пакетной обработкой к событийно-стриминговой облачной платформе на базе Apache Kafka и Snowflake. Зачем модному ритейлеру...

DataOps и инженерия больших данных: 10 лучших практик от корпорации DNB

Чтобы добавить в наши курсы для дата-инженеров еще больше реальных примеров и лучших DataOps-практик, сегодня мы расскажем, как специалисты крупной норвежской компании DNB обеспечивают надежный доступ к чистым и точным массивам Big Data, применяя передовые методы проектирования данных и реализации конвейеров их обработки. В этой статье мы собрали для вас...

Борьба за качество больших данных в Airbnb: 3 направления для Big Data Quality

Аналитика больших данных напрямую связана с их качеством, которое необходимо отслеживать на каждом этапе непрерывного конвейера их обработки (Pipeline). Сегодня рассмотрим методы и средства обеспечения Data Quality на примере корпорации Airbnb. Читайте далее про лучшие практики повышения качества больших данных от компании-разработчика самого популярного DataOps-инструмента в мире Big Data, Apache...

Заменит ли Apache Kafka прочие СУБД в мире Big Data: за и против

В этой статье мы поговорим про возможность нехарактерного использования Apache Kafka: не как распределенной стримминговой платформы или брокера сообщений, а в виде базы данных. Читайте далее, как Apache Kafka дополняет другие СУБД, не заменяя их полностью, почему такой вариант использования возможен в Big Data и когда он не совсем корректен....

Аналитика больших данных для фармацевтов: Arenadata Hadoop и другие Big Data системы в аптечной сети АСНА

В этой статье разберем кейс построения экосистемы управления Big Data с озером данных на примере федеральной фармацевтической сети - российской Ассоциации независимых аптек (АСНА). Читайте в этом материале, зачем фармацевтическому ритейлеру большие данные, с какими трудностями столкнулся этот проект цифровизации и как открытые технологии (Arenadata Hadoop, Apache Spark, NiFi и...

Big Data в профиль: что такое профилирование больших данных

Мы уже затрагивали тему корпоративных хранилищ данных (КХД), управления мастер-данными и нормативно-справочной информаций (НСИ) в контексте технологий Big Data. В продолжение этого, сегодня рассмотрим, что такое профилирование данных, зачем это нужно, при чем тут озера данных (Data Lake) и ETL-процессы, а также прочие аспекты инженерии и аналитики больших данных. Что...

От беспорядочных связей к микросервисной консистентности: архитектурная история Big Data систем на примере Apache Kafka

В этой статье поговорим про интеграцию информационных систем: обсудим SOA и ESB-подходы, рассмотрим стриминговую архитектуру и возможности Apache Kafka для организации быстрого и эффективного обмена данными между различными бизнес-приложениями. Также обсудим, что влияет на архитектуру интеграции корпоративных систем и распределенных Big Data приложений, что такое спагетти-структура и почему много сервисов...

Поиск по сайту