Сине-зеленое развертывание ETL-процессов с группами задач Apache AirFlow

В этой статье для обучения дата-инженеров рассмотрим, как крупнейший медиа-банк Storyblocks добился обновления данных в корпоративном хранилище без простоев с помощью DevOps-идеи сине-зеленого развертывания и механизма TaskGroup в Apache Airflow. Проблемы ETL при массовой загрузке данных в Data Lake и DWH Storyblocks – это крупнейший в мире банк данных, включающий...

DWH + Data Lake или что такое LakeHouse

В рамках обучения дата-инженеров и архитекторов корпоративных платформ и приложений аналитики больших данных, сегодня рассмотрим, что такое LakeHouse. Как эта новая гибридная архитектура управления данными объединяет 2 разнонаправленные парадигмы хранения информации, а также чего от нее ожидают бизнес-пользователи, дата-инженеры, аналитики и ML- специалисты. Историческая справка: от DWH к Data Lake...

Внешний датчик в Apache Airflow для поэтапной загрузки данных в таблицы DWH

Мы уже писали про датчики или сенсоры - особый тип операторов Apache AirFlow, предназначенных для ожидания какого-то события. Сегодня рассмотрим практический пример обучения дата-инженеров и разработчиков по использованию внешнего сенсора в рамках типовой задачи дата-инженерии по организации ETL/ELT-процессов при поэтапной загрузке данных в DWH для OLAP-систем. Постановка задачи: поэтапная загрузка...

Платформа аналитики больших данных Леруа Мерлен: потоковый CDC с Apache Kafka, NiFi, AirFlow и Flink в DWH на Greenplum

Чтобы добавить в наши курсы для дата-инженеров по технологиям Apache Kafka, Spark, AirFlow, NiFi, Flink и Greenplum, еще больше практических примеров, сегодня разберем кейс ритейлера Леруа Мерлен. Читайте далее, как сотрудники российского отделения этой международной компании интегрировали в единую платформу более 350 реляционных СУБД и NoSQL-источников с помощью CDC-подхода на...

Помнить все: 10 практик устранения нехватки памяти в Greenplum и 2 схемы управления ресурсами кластера

Развивая наш новый курс «Greenplum для инженеров данных», сегодня рассмотрим, почему в этой MPP-СУБД возникают проблемы нехватки памяти, каковы типовые способы их решения и чем очереди ресурсов отличаются от ресурсных групп. Читайте далее про схемы управления ресурсами в Greenplum и особенности параметра конфигурации statement_mem. Очереди vs Группы: 2 схемы управления...

Аналитика больших данных с Apache Airflow без дата-инженера: Viewflow от DataCamp

В этой статье поговорим про Viewflow: что такое, как устроено, чем полезно аналитикам данных и Data Scientist’ам. Встречайте новый фреймворк на базе Apache AirFlow от DataCamp – американского edu-стартапа в области ИИ, который упрощает создание и управление материализованными представлениями на SQL, R и Python в концепции low code, т.е. практически...

Как построить OLAP-конвейер в реальном времени на Greenplum и Apache NiFi: разбор интеграционного коннектора для приема больших данных

Сегодня разберем еще одну интересную тему из нашего нового курса «Greenplum для инженеров данных» по построению конвейеров приема данных для этой MPP-СУБД в рамках веб-интерфейса платформы автоматизированного управления потоками работ Apache NiFi. Читайте далее, как устроен коннектор VMware Tanzu Greenplum для Apache NiFi и какие возможности он предоставляет дата-инженеру. Что...

Трудности перекоса: как устранить неравномерность данных и вычислений в Greenplum

Партиционирование таблиц – надежный способ повышения производительности Greenplum, который тесно связан с особенностями распределения данных по сегментам кластера. Читайте далее, чем опасно неравномерное распределение данных и вычислений по узлам, а также как найти дата-инженеру и устранить эти перекосы в MPP-СУБД, чтобы повысить скорость выполнения SQL-запросов и решить проблемы с нехваткой...

Партиционирование таблиц в Greenplum: 10 лучших практик и особенности распределения по сегментам

Мы уже рассказывали про основы хранения и аналитики больших данных в Greenplum, а также рассматривали особенности индексации и сжатия данных в этой MPP-СУБД. Продолжая разговор о нашем новом курсе «Greenplum для инженеров данных», сегодня разберем лучшие практики разбиения данных на разделы и пример их распределения по сегментам кластера. Кратко о...

Индексируем и сжимаем: особенности хранения и аналитики Big Data в Greenplum

В продолжение вчерашней статьи по нашему новому курсу «Greenplum для инженеров данных», сегодня рассмотрим особенности индексации и сжатия данных в этой MPP-СУБД. Читайте далее, почему в Greenplum можно обойтись без индексов, когда выбирать RLE-сжатие вместо zlib, зачем сжимать рабочие файлы при выполнении SQL-запросов и что такое селективность индекса. ТОП-10 советов по...

Поиск по сайту