Завершая цикл статей про MLOps, сегодня мы расскажем про 5 шаблонов практического внедрения моделей Machine Learning в промышленную эксплуатацию (production). Читайте далее, что такое Model-as-Service, чем это отличается от гибридного обслуживания и еще 3-х вариантов интеграции машинного обучения в production-системы аналитики больших данных (Big Data), а также при чем тут...
Самообслуживаемая аналитика больших данных – один из главных трендов в современном мире Big Data, который дополнительно стимулирует цифровизация. В продолжение темы про self-service Data Science и BI-системы, сегодня мы рассмотрим, что такое Cloudera Data Science Workbench и чем это зарубежный продукт отличается от отечественного Arenadata Analytic Workspace на базе Apache...
Чтобы сделать курсы по Spark еще более интересными и полезными, сегодня мы расскажем, зачем этот Big Data фреймворк разворачивают на Kubernetes (K8s) – платформе автоматизации развёртывания, масштабирования и управления контейнеризированными приложениями. Читайте в нашей статье про основные варианты использования и достоинства этого подхода к администрированию и эксплуатации Apache Spark. Зачем...
Чтобы наглядно показать, как аналитика больших данных и машинное обучение помогают быстро решить актуальные бизнес-проблемы, сегодня мы рассмотрим кейс компании Леруа Мерлен. Читайте в нашей статье про нахождение аномалий в сведениях об остатках товара на складах и в магазинах с помощью моделей Machine Learning, а также про прикладное использование Apache...
Вчера мы рассказывали про самые известные утечки Big Data с открытых серверов Elasticsearch (ES). Сегодня рассмотрим, как предупредить подобные инциденты и надежно защитить свои большие данные. Читайте в нашей статье про основные security-функции ELK-стека: какую безопасность они обеспечивают и в чем здесь подвох. Несколько cybersecurity-решений для ES под разными лицензиями...
Вчера мы рассматривали интеграцию ClickHouse с Apache Kafka с помощью встроенного движка. Сегодня поговорим про проблемы, которые могут возникнуть при его практическом использовании и разберем способы их решения для корректной связи этих Big Data систем. Почему случаются тайм-ауты: многопоточность и безопасность Напомним, интеграцию ClickHouse и Kafka обеспечивает встроенный движок (engine),...
Мы уже рассказывали про интеграцию Tarantool с Apache Kafka на примере Arenadata Grid. Сегодня рассмотрим, как интегрировать Кафка с MPP-СУБД Greenplum и каковы ограничения каждого из существующих способов. Читайте в сегодняшнем материале, что такое GPSS, PXF и при чем тут Docker-контейнер с коннектором Кафка для Arenadata DB. IoT и не...
Недавно мы рассказывали про Airflow Kubernetes Executor, который позволяет выполнять задачи DAG-графа Эйрфлоу в среде Kubernetes, развертывая Docker-контейнер на отдельном пользовательском модуле (pod). Сегодня рассмотрим, какие еще есть исполнители задач в Apache Airflow, как они используются при автоматизации batch-процессов обработки больших данных и с какими проблемами можно столкнуться при их...
Эффективное обучение AirFlow, также как курсы по Spark, Hadoop, Kafka и другим технологиям больших данных (Big Data) также включают нюансы интеграции этого фреймворка с другими средами. Например, вчера мы рассматривали преимущества DevOps-подхода к разработке Data Flow на примере взаимосвязи Apache Airflow с Kubernetes посредством специальных операторов. Продолжая эту тему, сегодня...
Вчера мы рассказали, почему запускать Airflow на Kubernetes – это эффективно и выгодно для всех участников batch-процессов с большими данными (Big Data): разработчиков Data Flow, Data Scientist’ов, аналитиков и инженеров. Сегодня рассмотрим, что такое Airflow Kubernetes Operator и чем он отличается от подобной разработки компании Google. Как работает AirFlow Kubernetes...