7 ноября 2021 года вышел очередной релиз Apache NiFi с новыми фичами, улучшениями и исправлениями ошибок. Краткий обзор самых важных новинок: от постоянного хранилища для stateless-потоков и настроек облачных провайдеров до интеграции процессоров с пользователями Kerberos и улучшения работы с GitHub. Новинки и улучшения Apache NiFi 1.15.0 Свежий выпуск Apache...
Мы уже писали о сложностях развертывания Apache Kafka на платформе управления контейнерами Kubernetes. Некоторые из этих проблем отлично решает KubeMQ – брокер очередей сообщений на Kubernetes. Зачем нужна очередная служба обмена данными, как она устроена и при чем здесь Kafka. Проблемы Kafka на Kubernetes и не только Сложная архитектура современных...
Сегодня рассмотрим, как организовать полностью сохраняемый сервис Apache NiFi с помощью Docker, чтобы обеспечить безопасность конвейеров и потоков данных при изменении конфигураций и перезапуске служб. А также разберем, как дата-инженеру и администратору кластера NiFi запустить его на Kubernetes. Проблемы масштабирования и отказоустойчивости Apache NiFi Благодаря наличию веб-GUI, множеству готовых процессоров...
Инженерия данных нужна не только большим компаниям с крупными Big Data проектами. Сегодня рассмотрим, как Apache AirFlow повышает эффективность low-code фреймворка Zapier с помощью своего REST API и Amazon SQS. Также читайте далее об интеграции приложений без разработки кода и удаленный запуск Matillion-заданий в AWS с AirFlow. Low Code интеграция...
Чтобы дополнить наши курсы по Kafka и Spark интересными примерами, сегодня рассмотрим практический кейс разработки микросервисного конвейера машинного обучения на этих фреймворках. Читайте далее, зачем выносить ML-компонент в отдельное Python-приложение от остальной части Big Data pipeline’а, и как Docker поддерживает эту концепцию микросервисного подхода. Постановка задачи и компоненты микросервисного ML-конвейера...
Совмещение Airflow с Kubernetes уже становится стандартом де-факто для дата-инженеров. Недавно мы рассказывали про 3 популярные среды развертывания и сопровождения этого ETL-фреймворка в Kubernetes. Продолжая эту тему, сегодня рассмотрим, какие операторы использовать для контейнерного запуска batch-задач, а также поговорим о том, как Docker-образы помогут решить проблему изменения версий Python и...
С учетом тренда на контейнеризацию при разработке и развертывании любых технологий, в т.ч. Big Data, сегодня рассмотрим плюсы и минусы совместного использования Apache Spark с Kubernetes. Читайте далее, как отправить Спарк-задание в кластер Кубернетес и почему это сэкономит затраты на вашу инфраструктуру аналитики больших данных, не повысив производительность отдельных приложений,...
Поскольку курсы инженеров Big Data предполагают практическое обучение на реальных кейсах, сегодня поговорим про тестирование конвейеров обработки и аналитики больших данных и разберем несколько прикладных примеров для компонентов экосистемы Apache Hadoop. Читайте далее про проверку работоспособности, а также поиск ошибок в Spark-заданиях и DAG-цепочках Airflow. Конвейер для конвейера: сложности тестирования...
Завершая цикл статей про MLOps, сегодня мы расскажем про 5 шаблонов практического внедрения моделей Machine Learning в промышленную эксплуатацию (production). Читайте далее, что такое Model-as-Service, чем это отличается от гибридного обслуживания и еще 3-х вариантов интеграции машинного обучения в production-системы аналитики больших данных (Big Data), а также при чем тут...
Самообслуживаемая аналитика больших данных – один из главных трендов в современном мире Big Data, который дополнительно стимулирует цифровизация. В продолжение темы про self-service Data Science и BI-системы, сегодня мы рассмотрим, что такое Cloudera Data Science Workbench и чем это зарубежный продукт отличается от отечественного Arenadata Analytic Workspace на базе Apache...