Зачем нужны коммитеры S3A: решаем проблемы совместимости Amazon S3 с Hadoop HDFS

В поддержку курса Hadoop для инженеров данных сегодня разберем, в чем проблема безопасной отправки заданий и файлов в облачное хранилище Amazon S3 и как ее решить. Читайте далее, почему AWS S3 не дает гарантий согласованности как HDFS, из-за чего S3Guard не обеспечивает транзакционность и как настроить коммиттеры S3A для Spark...

Как Spark-приложению выполнять миллионы операций в секунду с данными в AWS S3

Чтобы сделать курсы Hadoop и Spark для инженеров данных еще более интересными, сегодня мы рассмотрим кейс фудтех-компании iFood - лидера рынка доставки еды в странах Латинской Америки. Читайте далее, в чем проблема быстрых операций со множеством файлов в облачном хранилище Amazon S3 и как ее решить с помощью префиксов корзины...

Как сэкономить на AWS со Spark и Kubernetes: спотовые узлы и готовые платформы

Продолжая разговор про оптимизацию приложений Apache Spark в Kubernetes, сегодня разберем, как сократить расходы на облачный кластер с помощью спотовых узлов. А в качестве практического примера рассмотрим кейс компании Weather2020, дата-инженеры которой смогли всего за 3 недели развернуть террабайтные ETL-конвейеры в AWS с AirFlow и Spark на Kubernetes без глубокой...

Оптимизация Apache Spark на Kubernetes: 4 способа ускорить контейнеризованные приложения

Недавно мы рассказывали об особенностях запуска приложений Apache Spark в кластере Kubernetes с учетом новшеств релиза 3.1.1, где с этого варианта развертывания снят экспериментальный режим. В дополнение к ранее рассмотренным способам оптимизации Спарк-приложений, сегодня разберем, как инженеру Big Data ускорить их при запуске на платформе K8s. Как ускорить Spark-приложения на...

7 функций общей доступности Kubernetes в Apache Spark 3.1.1: мартовский релиз 2021

Вчера мы упоминали, что с марта 2021 года в версии Apache Spark 3.1.1 с развертывания на Kubernetes снят экспериментальный режим, внесено множество улучшений для стабильной работы контейниризованных приложений и добавлены другие полезные обновления. Читайте далее, почему развертывание Spark на Kubernetes стало еще проще, как реализуется плавное завершение работы узла без...

3 достоинства и пара недостатков Apache Spark на Kubernetes

С учетом тренда на контейнеризацию при разработке и развертывании любых технологий, в т.ч. Big Data, сегодня рассмотрим плюсы и минусы совместного использования Apache Spark с Kubernetes. Читайте далее, как отправить Спарк-задание в кластер Кубернетес и почему это сэкономит затраты на вашу инфраструктуру аналитики больших данных, не повысив производительность отдельных приложений,...

От пакетного до потокового озера данных с Apache Kafka: кейс компании Trainline

Постоянно добавляя в наши курсы Apache Kafka для разработчиков интересные и практические примеры, сегодня мы разберем кейс тревел-площадки Trainline, которая агрегирует данные от 270 железнодорожных и автобусных компаний в 45 странах, предлагая выгодные билеты на европейские поезда и автобусы. Читайте далее, почему пакетный режим работы озера данных перестал отвечать требованиям...

Февральская новинка-2021: Apache Spark премиум-класса в Delta Lake Databricks на Google Cloud

Продолжая вчерашний разговор про Delta Lake на базе Apache Spark от Databricks, сегодня мы расскажем одну из последних новостей о запуске этого решения на Google Cloud с середины февраля 2021 года. Читайте далее, чем хороша эта проприетарная Big Data платформа для аналитики больших данных на Spark, инструментах визуализации и MLOps,...

Как вести мониторинг финансовых транзакций в реальном времени с Apache Kafka и Spark в Delta Lake: пример аналитики больших данных

Сегодня рассмотрим пример построения системы аналитики больших данных для мониторинга финансовых транзакций в реальном времени на базе облачного Delta Lake и конвейера распределенных приложений Apache Kafka, Spark Structured Streaming и других технологий Big Data. Читайте далее о преимуществах облачного Delta Lake от Databricks над традиционным Data Lake. Постановка задачи: финансовая...

Apache Spark для инженера данных: 3 полезных инструмента построения ETL-конвейеров

Дополняя наши курсы дата-инженеров полезными примерами, сегодня рассмотрим, как упростить разработку и мониторинг ETL-конвейеров с помощью дополнительных технологий Big Data, совместимых с Apache Spark. Читайте далее, когда и зачем инженеру данных пригодятся SaaS-продукт Prophecy.io, движок StreamSets Transformer и REST-интерфейс Apache Livy, а также как все они связаны со Spark. 3...

Поиск по сайту