Реализация LakeHouse на Greenplum и Cloudian HyperStore Object Storage

Специально для обучения дата-инженеров и архитекторов DWH сегодня разберем, как построить LakeHouse на Greenplum и объектном хранилище Cloudian HyperStore, совместимом с AWS S3. Что такое Cloudian HyperStore Object Storage, как оно совмещается с Greenplum и при чем здесь Apache Cassandra с интеграционным фреймворком PXF. Что такое объектное хранилище Cloudian HyperStore...

Чего ждать в MLFlow 2.0: конвейеры от Databricks

В линейке продуктов Databricks не только облачная платформа аналитики больших данных на базе Apache Spark. В портфолио компании также присутствует популярный MLOps-инструмент под названием MLflow, последний релиз которого (1.27.0) вышел 1 июля 2022 года. Однако, разработчики уже анонсировали в мажорный выпуск новой версии MLOps-фреймворка с открытым исходным кодом. Читайте далее,...

Как сделать ETL-конвейеры Spark-заданий в AWS EMR на 50% дешевле: кейс Duolingo

Как Cluster Autotuner от Sync для автонастройки кластера Spark в AWS EMR помог edtech-компании Duolingo снизить затраты на 55%. Полезный сервис для дата-инженера и администратора кластера, чтобы устранить неэффективную ручную настройку, обеспечив оптимальную стоимость, производительность и надежность распределенных вычислений без изменения кода. Дорогой Apache Spark на AWS EMR Duolingo –...

Apache Kafka vs JMS-брокеры: 3 главных отличия

В этой статье для обучения дата-инженеров и разработчиков распределенных систем сравним Apache Kafka с популярными реализациями Java-стандартов обмена сообщениями, к которым относится Apache ActiveMQ, IBM MQ, Rabbit MQ и другие JMS-брокеры. Чем распределенная платформа потоковой передачи событий отличается от JMS-брокеров и что между ними общего. Что такое JMS-брокер Прежде чем...

Поиск событийных цепочек в реальном времени с CEP-библиотекой Apache Flink

Сегодня разберем тему, особенно полезную для обучения разработчиков распределенных приложений и дата-инженеров масштабных платформ аналитики больших данных на Apache Flink: обнаружение сложных цепочек связанных событий в потоковой обработке. Как создать свой шаблон поиска сложных событий с библиотекой  FlinkCEP. Комплексная обработка событий или зачем вам CEP Современный data-driven бизнес хочет принимать...

Как LLAP ускоряет выполнение SQL-запросов в Apache Hive

В этой статье для обучения дата-инженеров и аналитиков данных заглянем под капот Apache Hive, чтобы разобраться с механизмов LLAP. Как этот движок повышает производительность популярного SQL-on-Hadoop инструмента, поддерживая длительные процессы на одних и тех же ресурсах для кэширования и аналитической обработки больших данных. Что такое LLAP в Apache Hive и...

Как ускорить Greenplum с Heimdall Database Proxy: лайфхак для администратора

Сегодня рассмотрим, что такое Heimdall Database Proxy и как это пригодится администратору кластера Greenplum и разработчику распределенных приложений, взаимодействующих с этой MPP-СУБД. А также разберем, с какими проблемами администратор кластера может столкнуться при настройке совместного использования этих систем, и как их решить. Что такое Heimdall Database Proxy Хотя Greenplum работает...

Графовое машинное обучение: кейс Airbnb

В рамках продвижения нашего нового курса по графовой аналитике больших данных в бизнес-приложениях, сегодня разберем, как Airbnb использует графовые нейросети для улучшения машинного обучения. А также рассмотрим, как устроены GCN-нейросети и что определяет выбор между потоковым и пакетным ML-конвейером. Анализ графов для обогащения ML-моделей Многие проблемы машинного обучения могут быть...

Экономия места в Apache Kafka с форматом Parquet

Недавно мы сравнивали разные форматы сериализации данных, поддерживаемые Apache Kafka. Однако, AVRO и JSON не могут похвастаться таким высоким коэффициентом сжатия, как колоночный бинарный формат Parquet. Читайте далее, как хранить больше потоковых данных на тех же ресурсах с помощью движка Deephaven и других open-source решений. Apache Kafka и Parquet Apache...

Под капотом Apache Spark: 3 секрета для дата-инженера и разработчика

Постоянно добавляя в наши курсы по Apache Spark полезные материалы, сегодня мы рассмотрим, что происходит под капотом этого вычислительного движка, чтобы помочь разработчикам распределенных приложений и дата-инженерам повысить его эффективность. Тонкости сериализации данных, компиляции SQL-запросов в JavaBytecode и сборка мусора. 2 библиотеки сериализации данных в Apache Spark В распределенных системах...