Конвейер Big Data для Machine Learning на Apache Kafka: разбираем систему речевой аналитики

В этой статье мы рассмотрим комплексный конвейер (pipeline) обработки больших данных с помощью алгоритмов машинного обучения (Machine Learning) для системы речевого анализа Callinter от китайской компании Fano Labs. Apache Kafka играет ключевую роль в этом аналитическом конвейере, ежедневно обеспечивая бесперебойную стабильность и высокую производительность интеллектуальной обработки нескольких тысяч часов звонков....

Все грани Apache NiFi для построения ETL-pipeline’ов и обработки потоковых данных с Kafka и Spark

Продолжая разговор про инженерию больших данных, сегодня рассмотрим, как построить ETL-pipeline на открытых технологиях Big Data. Читайте далее про получение, агрегацию, фильтрацию, маршрутизацию и обработку потоковых данных с помощью Apache NiFi, Kafka и Spark, преобразование JSON, а также обогащение и сохранение данных в Hive, HDFS и Amazon S3. Пример потокового...

Kafka Connect для мониторинга событий и метрик: настраиваем JSON для интеграции с New Relic

Мы уже писали, что такое Kafka Connect и как этот инструмент обеспечивает потоковую передачу данных между Apache Kafka и другими системами на примере интеграции с Elasticsearch. Сегодня рассмотрим новый коннектор, который позволяет загружать данные из топиков Apache Kafka в платформу удаленного мониторинга работоспособности мобильных и веб-приложений New Relic через гибкий REST API....

Особенности JOIN-операций в Apache Kafka Streams на примере Twitter

Продолжая разговор про практическое применение Apache Kafka на примере организации рекомендательной системы Twitter, сегодня мы рассмотрим, как с помощью Kafka Streams был разработан конвейер сбора и агрегации данных для машинного обучения (Machine Learning). Читайте в нашей статье про особенности объединения больших данных через LeftJoin и InnerJoin в Apache Kafka Streams. Архитектура приложения...

Как Twitter построил на Apache Kafka новый ML-конвейер своей рекомендательной системы

Недавно мы рассказывали про преимущества event-streaming архитектуры с помощью Apache Kafka на примере The New York Times. В продолжение этой темы Apache Kafka, сегодня поговорим про использование этой Big Data платформы в Twitter для построения конвейера потоковой регистрации событий в рекомендательной системе на базе алгоритмов машинного обучения (Machine Learning). Как...

Как укротить NiFi: решаем проблемы ввода-вывода

Apache NiFi – это простая и мощная система для обработки и распределения больших данных в потоковом режиме, которая отлично справляется с огромными объемами и скоростями, оперируя с сотнями гигабайт и даже терабайтами информации. Однако, на практике при работе с этой Big Data платформой можно столкнуться с проблемой ввода-вывода (IOPS, Input-Output...

Как не наступить на 10 главных граблей Apache Airflow в production: разбираемся на практических примерах

Мы уже рассказывали про основные достоинства и недостатки Apache Airflow, с которыми чаще всего можно столкнуться при практическом использовании этого оркестратора конвейеров обработки больших данных (Big Data). Сегодня рассмотрим некоторые специфические ограничения, характерные для этой open-source платформы и способы решения этих проблем на реальных примерах. Все по плану: 5 особенностей...

Apache Kafka как ядро event-streaming Big Data архитектуры: кейс The New York Times

Сегодня мы продолжим разговор о событийно-процессной архитектуре Big Data систем на примере использования Apache Kafka в The New York Times. Читайте далее, как одно из самых известных американских СМИ с более чем 160-летней историей хранит в Apache Kafka все свои статьи и с помощью API Kafka Streams публикует контент в...

Заменит ли Apache Kafka прочие СУБД в мире Big Data: за и против

В этой статье мы поговорим про возможность нехарактерного использования Apache Kafka: не как распределенной стримминговой платформы или брокера сообщений, а в виде базы данных. Читайте далее, как Apache Kafka дополняет другие СУБД, не заменяя их полностью, почему такой вариант использования возможен в Big Data и когда он не совсем корректен....

Что не так с Delta Lake на Apache Spark: 7 основных проблем и их решения

При всех своих достоинствах Delta Lake, включая коммерческую реализацию этой Big Data технологии от Databricks, оно обладает рядом особенностей, которые могут расцениваться как недостатки. Сегодня мы рассмотрим, чего не стоит ожидать от этого быстрого облачного хранилище для больших данных на Apache Spark и как можно обойти эти ограничения. Читайте далее,...

Поиск по сайту