12 уровней IIoT-архитектуры: от периферийных датчиков до аналитики Big Data

Мы уже рассматривали типовую архитектуру систем Internet of Things (IoT). Сегодня поговорим подробнее про уровневую модель передачи и обработки данных от конечных устройств до облачных IoT-платформ, а также приведем примеры наиболее популярных средств обеспечения каждого из уровней этой сложной архитектуры Industrial Internet of Things, включая инструменты Big Data. Многоуровневый IIoT:...

Как Machine Learning помогает бизнесу зарабатывать на погоде: Big Data и метеомаркетинг

Мы уже рассказывали, как машинное обучение (Machine Learning) и большие данные (Big Data) помогают бизнесу сделать свои маркетинговые кампании персональными и оптимизировать рекламный бюджет. В этой статье рассмотрим, как метеоусловия влияют на маркетинг и каким образом бизнес может заработать на использовании данных об этих внешних условиях. Как погода влияет на...

Кто такой Data Scientist в Big Data: профессиональные компетенции исследователя данных

В этом выпуске мы продолжаем введение в Data Science для чайников, разбирая профессии Big Data, и рассказываем, кто такой Data Scientist: что необходимо знать ученому по данным и чем исследователь отличается от аналитика. Что делает ученый по данным Как и Data Analyst, исследователь данных тоже работает с информационными массивами путем...

Как интернет вещей использует Big Data: архитектура IoT-систем

Мы уже немного рассказывали об архитектуре IoT-систем в статье про промышленный интернет вещей. Сегодня поговорим подробнее про аппаратные и программные компоненты Internet of Things и IIoT, а также разберем, как малые данные со множества датчиков преобразуются в Big Data. Архитектура IoT-системы Типовая архитектура IIoT-систем состоит из следующих 3-х уровней [1]:...

Промышленный интернет вещей: 4 кейса применения Big Data в индустрии

Мы уже рассказывали, как интернет вещей (Internet of Things, IoT) вместе с технологиями Big Data и машинного обучения (Machine Learning) используются в нефтегазовой, транспортной, сельскохозяйственной и машиностроительных отраслях. Сегодня поговорим подробнее про промышленный IoT (Industrial Internet of Things, IIoT) на примерах его применения в тяжелом машиностроении и рассмотрим, почему индустриальный...

Как Big Data с Machine Learning борются с пробками и улучшают дороги

Продолжая тему «умного» города (data-driven city), сегодня мы собрали для вас 5 практических примеров, как в крупнейших мегаполисах по всему миру интернет вещей и большие данные с датчиков, проездных билетов и дорожных камер помогают бороться с пробками и улучшать состояние дорог, повышая уровень их безопасности и удобства использования. Internet of...

Почему каждый Data Scientist должен быть DevOps-инженером в Big Data

С точки зрения бизнеса DevOps (DEVelopment OPerations, девопс) можно рассматривать как углубление культуры Agile для управления процессами разработки и поставки программного обеспечения с помощью методов продуктивного командного взаимодействия и современных средств автоматизации. Сегодня мы поговорим о том, как эта методология используется в Big Data проектах, почему любой Data Scientist становится немного...

Умная недвижимость: Big Data, Machine Learning и IoT в девелопменте

Цифровизация различных прикладных отраслей продолжается - сегодня мы нашли для вас интересные кейсы, как большие данные, машинное обучение и интернет вещей используется в жилой и коммерческой недвижимости. Чем Big Data, Machine Learning и Internet Of Things (IoT) полезны строителям и риелторам, и каким образом внедрение этих технологий поможет потребителям. Big...

Эко-Big Data в большом городе: как технологии делают мегаполис чище

Цифровизация возможна не только на предприятиях. Цифровая трансформация настигает даже города, чтобы сделать их более удобными для жителей и менее вредными для планеты. Сегодня мы подготовили для вас 8 интересных примеров по 4 разным направлениям об использовании больших данных (Big Data), машинного обучения (Machine Learning) и интернета вещей (Internet of...

Выделение признаков: зачем отбирать предикторы и как это правильно сделать – готовим датасет к Data Mining и Machine Learning

Даже после очистки и нормализации данных, выборка еще не совсем готова к моделированию. Для машинного обучения (Machine Learning) нужны только те переменные, которые на самом деле влияют на итоговый результат. В этой статье мы расскажем, что такое отбор или выделение признаков (Feature Selection) и почему этот этап подготовки данных (Data...