В этом выпуске мы продолжаем введение в Data Science для чайников, разбирая профессии Big Data, и рассказываем, кто такой Data Scientist: что необходимо знать ученому по данным и чем исследователь отличается от аналитика.
Что делает ученый по данным
Как и Data Analyst, исследователь данных тоже работает с информационными массивами путем выполнения следующих операций:
- поиск закономерностей в информационных наборах;
- подготовка данных к моделированию (выборка, очистка, генерация признаков, интеграция, форматирование);
- моделирование и визуализация данных;
- разработка и тестирование гипотез по улучшению бизнес-метрик через построение моделей машинного обучения (Machine Learning).
Data Scientist, в большинстве случаев, ориентирован на предиктивную аналитику, тогда как аналитик данных чаще всего рассматривает информацию пост-фактум. Тем не менее, основная цель исследователя данных созвучна главной рабочей цели аналитика Big Data – извлечение из информационных массивов сведений, полезных для бизнеса с точки зрения принятия оптимальных управленческих решений.
Профессиональные компетенции исследователя данных: что должен знать Data Scientist
Чтобы решать вышеописанные задачи, ученый по данным должен быть компетентным в следующих областях знаний:
- информационные технологии – методы и средства интеллектуального анализа данных (Data Mining): алгоритмы и структуры данных, машинное обучение и другие разделы искусственного интеллекта (искусственные нейронные сети, генетические алгоритмы, deep learning), языки программирования (R, Python, Julia, Haskell), среды статистического анализа (R-Studio, MatLab, Jupyter Notebook);
- математика (статистика, теория вероятностей, дискретная математика);
- знание предметной области – отраслевая или корпоративная специфика.
Отметим, что, в отличие от аналитика данных, Data Scientist концентрируется на технических сторонах исследования информации, уделяя меньшее внимание системному анализу и бизнес-процессам.
Чем отличается аналитик Big Data от исследователя данных
На первый взгляд может показаться, что Data Scientist ничем не отличается от Data Analyst, ведь их рабочие обязанности и профессиональные компетенции частично пересекаются. Однако, это не совсем взаимозаменяемые специальности. При значительном сходстве, отличия между ними также весьма существенные:
- по инструментарию — аналитик чаще всего работает с ETL-хранилищами и витринами данных, тогда как исследователь взаимодействует с Big Data системами хранения и обработки информации (стек Apache Hadoop, NoSQL-базы данных и т.д.), а также статистическими пакетами (R-studio, Matlab и пр.);
- по методам исследований – Data Analyst чаще использует методы системного анализа и бизнес-аналитики, тогда как Data Scientist, в основном, работает с математическими средствами Computer Science (модели и алгоритмы машинного обучения, а также другие разделы искусственного интеллекта);
- по зарплате – на рынке труда Data Scientist стоит чуть выше, чем Data Analyst (100-200 т.р. против 80-150 т.р., по данным рекрутингового портала HeadHunter в августе 2019 г.). Возможно, это связано с более высоким порогом входа в профессию: исследователь по данным обладает навыками программирования, тогда как Data Analyst, в основном, работает с уже готовыми SQL/ETL-средствами.
На практике в некоторых компаниях всю работу по данным, включая бизнес-аналитику и построение моделей Machine Learning выполняет один и тот же человек. Однако, в связи с популярностью T-модели компетенций ИТ-специалиста, при наличии широкого круга профессиональных знаний и умений предполагается экспертная концентрация в узкой предметной области. Поэтому сегодня все больше компаний стремятся разделять обязанности Data Analyst и Data Scientist, а также инженера по данным (Data Engineer) и администратора Big Data, о чем мы расскажем в следующих статьях.
В области Big Data ученому по данным пригодятся практические знания по облачным вычислениям и инструментам машинного обучения. Эти и другие вопросы по исследованию данных мы рассматриваем на наших курсах обучения и повышения квалификации ИТ-специалистов в лицензированном учебном центре для руководителей, аналитиков, архитекторов, инженеров и исследователей Big Data в Москве:
- PYML: Машинное обучение на Python
- DPREP: Подготовка данных для Data Mining
- DSML: Машинное обучение в R
- DSAV: Анализ данных и визуализация в R