Кто такой Data Analyst в Big Data: что нужно знать аналитику данных

Big Data, Большие данные, профессия, карьера, цифровизация, цифровая трансформация, предиктивная аналитика, машинное обучение, Machine Learning

Продолжая разговор про то, с чего начать вход в большие данные, и какие бывают ИТ-специальности, сегодня мы расскажем, чем именно занимается аналитик Big Data, что он должен знать и уметь, а также где и как получить необходимые профессиональные компетенции.

Что делает аналитик данных

Как правило, Data Analyst работает с информационными массивами, самостоятельно выполняя при этом целый набор операций:

  • сбор данных;
  • подготовка данных к анализу (выборка, очистка, сортировка);
  • поиск закономерностей в информационных наборах;
  • визуализация данных для быстрого понимания имеющихся результатов и будущих тенденций;
  • формулирование гипотез по улучшению конкретных бизнес-метрик за счет изменения других показателей.

Все эти задачи необходимы для достижения главной цели аналитика данных – извлечение из массивов информации сведений, ценных бизнесу для принятия оптимальных управленческих решений.

В некоторых компаниях в обязанности аналитика данных также входит их моделирование, т.е. разработка и тестирование моделей машинного обучения (Machine Learning). Однако, в большинстве случаев, Machine Learning является областью ответственности исследователя или ученого по данным (Data Scientist). При более детальном разделении труда машинным обучением занимается отдельный специалист. О работе Data Scientist’а и его профессиональных компетенциях мы рассказываем здесь.

Также стоит отметить, что иногда Data Analyst занимается анализом бизнес-процессов и очень плотно работает с другими ИТ-специалистами при описании потоков и хранилищ корпоративной информации. Таким образом, в область ответственности аналитика данных также входят задачи Business Intelligence (BI) и оптимизации производственных процессов.

Data Ananlyst, аналитик данныхб Data Science, Data Mining, Big Dtat, Business Intelligence
Профессиональный портрет аналитика данных

Профессиональные компетенции аналитика данных: что должен знать Data Analyst

Исходя из вышеописанных задач, можно определить следующие области знаний, необходимые для аналитика данных:

  • информационные технологии – методы и средства интеллектуального анализа данных (Data Mining) – языки программирования (R, Python и пр.) и SQL-подобные языки для написания запросов к нереляционным и реляционным базам данных, а также BI-системы, ETL-хранилища и витрины данных типа Tableau, Power BI, QlikView и т.д., а также основы инфраструктуры Apache Hadoop;
  • математика (статистика, теория вероятностей, дискретная математика);
  • системный анализ, управление качеством, проектный менеджмент и методы анализа бизнес-процессов (подходы бережливого производства, SWOT, ABC, PDCA, IDEF, EPC, BPMN, ССП и пр.).

Кроме того, весьма полезны будут прикладные знания и практический опыт, специфичные для предметной области, в которой работает Data Analyst. Например, основы бухучета пригодятся для аналитика данных в банке, а методы маркетинга помогут при анализе информации о потребностях клиентов или оценке новых рынков.

что должен знать аналитик данных data analyst
Области знаний для аналитика данных

Специфика Big Data добавляет к этим базовым компетенциям Data Analyst еще навыки работы с озерами данных (Data Lakes), понимание вопросов информационной безопасности и управления данными (Data Governance), а также владение типовыми сценариями цифровизации (цифровой трансформации) и применения технологий больших данных в различных предметных областях (use-cases). Все это и множество других практических знаний для аналитика данных мы рассматриваем на наших курсах обучения и повышения квалификации ИТ-специалистов в лицензированном учебном центре для руководителей, аналитиков, архитекторов, инженеров и исследователей Big Data в Москве:

 

Поиск по сайту