Аналитика больших данных с Apache Airflow без дата-инженера: Viewflow от DataCamp

В этой статье поговорим про Viewflow: что такое, как устроено, чем полезно аналитикам данных и Data Scientist’ам. Встречайте новый фреймворк на базе Apache AirFlow от DataCamp – американского edu-стартапа в области ИИ, который упрощает создание и управление материализованными представлениями на SQL, R и Python в концепции low code, т.е. практически...

3 оператора Apache Airflow для контейнерных конвейеров данных

Совмещение Airflow с Kubernetes уже становится стандартом де-факто для дата-инженеров. Недавно мы рассказывали про 3 популярные среды развертывания и сопровождения этого ETL-фреймворка в Kubernetes. Продолжая эту тему, сегодня рассмотрим, какие операторы использовать для контейнерного запуска batch-задач, а также поговорим о том, как Docker-образы помогут решить проблему изменения версий Python и...

Где развернуть Apache AirFlow: 3 инфраструктуры для дата-инженера

Для практического использования Apache Airflow в production дата-инженеру необходимо не только обучение основам работы с этим фреймворком, но и знания о базовой инфраструктуре его развертывания. Поэтому сегодня поговорим о 3-х популярных средах для развертывания и сопровождения этого ETL-фреймворка: Astronomer, Google Cloud Composer и Amazon Managed Workflows, разобрав их основные возможности...

Разделяй и властвуй: управление зависимыми DAG в Apache AirFlow

Чтобы сделать обучение дата-инженеров еще более полезным, сегодня мы рассмотрим проблему управления взаимозависимыми цепочками задач в Apache AirFlow. Читайте далее, как бразильская ИТ-компания QuintoAndar разработала промежуточный компонент Mediator на базе одноименного шаблона архитектурного проектирования ПО, чтобы облегчить взаимодействие между разными DAG’ами в конвейерах обработки больших данных. Проблема взаимозависимых DAG’ов в...

15 советов по работе с DAG в Apache AirFlow: лучшие практики дата-инженера

Практическое обучение дата-инженеров – это не просто курсы по основам Big Data, а полезные рекомендации с реальными примерами. Поэтому сегодня рассмотрим, как работать с DAG в Apache AirFlow еще эффективнее с помощью параметров конфигурации, плагинов, меток, шаблонов, переменных и еще 10 различных инструментов. 15 лучших практики для DAG в Apache...

5 преимуществ разделения пакетов в Apache AirFlow 2.0 или как создать свой провайдер с блэкджеком и хуками

Чтобы добавить в наши обновленные авторские курсы для дата-инженеров по Apache AirFlow еще больше интересного, сегодня продолжим разбирать полезные дополнения релиза 2.0 и поговорим, почему разделение фреймворка на пакеты делает его еще удобнее. Также рассмотрим практический пример создания общедоступного провайдера из локального Python-пакета с собственными операторами, хуками и прочими компонентами....

3 новинки для DAG в Apache AirFlow 2.0

В поддержку наших полностью обновленных авторских курсов для инженеров данных по Apache AirFlow, сегодня рассмотрим новые способы определения DAG, которые были добавлены в релизе 2.0. Читайте далее, что под капотом TaskFlow API, как поместить задачи в TaskGroup, чем dag_policy отличается от task_policy и почему все это упрощает работу инженера Big...

Как сэкономить на AWS со Spark и Kubernetes: спотовые узлы и готовые платформы

Продолжая разговор про оптимизацию приложений Apache Spark в Kubernetes, сегодня разберем, как сократить расходы на облачный кластер с помощью спотовых узлов. А в качестве практического примера рассмотрим кейс компании Weather2020, дата-инженеры которой смогли всего за 3 недели развернуть террабайтные ETL-конвейеры в AWS с AirFlow и Spark на Kubernetes без глубокой...

Что не так с конвейером Apache Kafka и Spark Structured Streaming для потоковой аналитики больших данных в AWS: практический пример

Чтобы дополнить наши курсы по Spark для разработчиков распределенных приложений и инженеров данных практическими примерами, сегодня рассмотрим кейс американской ИТ-компании ThousandEyes, которая разрабатывает программное обеспечение для анализа производительности локальных и глобальных сетей. Читайте далее, как создать надежный конвейер и устойчивое озеро данных (Data Lake) для быстрой аналитики Big Data в...

Насколько ты знаком с Apache AirFlow: открытый тест для инженеров Big Data

Хорошие курсы дата-инженеров предполагают не только изучение теории и практики, но и проверку полученных знаний. Поэтому сегодня мы предлагаем вам открытый интерактивный тест по Apache AirFlow. Ответьте на 10 простых вопросов и узнайте, насколько хорошо вы знакомы с особенностями администрирования и эксплуатации этого популярного фреймворка для автоматизации batch-заданий обработки и...