В рамках обучения дата-инженеров, сегодня рассмотрим проблему роста числа операций ввода-вывода в секунду (IOPS) при обработке большого количества данных в потоках Apache NiFi и способы ее решения. Читайте далее, как перемещение репозиториев NiFi с жесткого диска в оперативную память снижает IOPS, а также зачем при этом в Big Data систему...
Сегодня рассмотрим, что такое Data Build Tool, как этот ETL-инструмент связан с корпоративным хранилищем и озером данных, а также чем полезен дата-инженеру. В качестве практического примера разберем кейс подключения DBT к Apache Spark, чтобы преобразовать данные в таблице Spark SQL на Amazon Glue со схемой поверх набора файлов в AWS...
Поскольку наши курсы по Apache Spark предполагают практическое обучение с глубоким погружением в особенности разработки и настройки распределенных приложений, сегодня рассмотрим, как именно выполняются кластерные вычисления в рамках этого Big Data фреймворка. Читайте далее, из чего состоит архитектура Spark-приложения, как связаны SparkContext и SparkConf, а также зачем ограничивать размер драйвера...
Чтобы добавить в наши обновленные авторские курсы для дата-инженеров по Apache AirFlow еще больше интересного, сегодня продолжим разбирать полезные дополнения релиза 2.0 и поговорим, почему разделение фреймворка на пакеты делает его еще удобнее. Также рассмотрим практический пример создания общедоступного провайдера из локального Python-пакета с собственными операторами, хуками и прочими компонентами....
Продолжая вчерашний разговор про потоковую аналитику больших данных на Apache Kafka и Pinot, сегодня рассмотрим особенности интеграции этих систем. Читайте далее, как входные данные Kafka разделяются, реплицируются и индексируются в Pinot, каким образом выполняется обработка данных через распределенные SQL-запросы. Также разберем, почему управление памятью серверов Pinot, потребляющих данные из Kafka,...
В этой статье разберем несколько популярных сценариев потоковой аналитики больших данных на Kafka, CDC-платформе Debezium и быстром OLAP-хранилище Apache Pinot. Читайте далее, почему все эти Big Data технологии отлично подходят для консолидации и интеграции данных из разных источников в реальном времени, включая аналитический аудит изменений, отслеживание событий в распределенном домене...
Вчера мы упоминали, как долгожданный KIP-500, реализованный в марте 2021 года, позволяет не только отказаться от Zookeeper в кластере Apache Kafka, но и снимает ограничение числа разделов, чтобы масштабировать брокеры практически до бесконечности. Однако, не все так просто: читайте далее, какие важные функции еще не поддерживаются в этом экспериментальном режиме...
Сегодня рассмотрим важную практическую задачу из курсов Kafka для разработчиков и администраторов кластера – разделение топиков по брокерам. Читайте далее, как пропускная способность всей Big Data системы зависит от числа разделов, коэффициента репликации и ответного ack-параметра, а также при чем здесь KIP-500, позволяющий отказаться от Zookeeper. Что такое партиционирование в...
В поддержку курса Hadoop для инженеров данных сегодня разберем, в чем проблема безопасной отправки заданий и файлов в облачное хранилище Amazon S3 и как ее решить. Читайте далее, почему AWS S3 не дает гарантий согласованности как HDFS, из-за чего S3Guard не обеспечивает транзакционность и как настроить коммиттеры S3A для Spark...
Чтобы сделать курсы Hadoop и Spark для инженеров данных еще более интересными, сегодня мы рассмотрим кейс фудтех-компании iFood - лидера рынка доставки еды в странах Латинской Америки. Читайте далее, в чем проблема быстрых операций со множеством файлов в облачном хранилище Amazon S3 и как ее решить с помощью префиксов корзины...