Сегодня рассмотрим несколько полезных приемов по работе с Apache Hive, которые пригодятся инженеру данных и специалисту по Data Science в проектах аналитики больших данных. Как разделить и сегментировать таблицы, зачем изменять значение конфигурации памяти этапов MapReduce, чем полезна автоматическая обработка асимметрии данных и еще пара лайфхаков для ускорения выполнения SQL-запросов...
Мы уже писали про важность модульного тестирования DAG Apache Airflow, а также лучшие практики и инструменты реализации этого процесса. Как протестировать структуру DAG со сложной условной логикой, сделав тест детерминированным с помощью простой сортировки идентификаторов задач, а также каким образом дата-инженеру помогут шаблоны Jinja. Проверка структуры DAG в AirFlow С...
Недавно мы писали про проблемы приложений Apache Flink в кластере Kubernetes. Сегодня рассмотрим, каким образом можно развернуть и запустить задания этого фреймворка распределенной обработки данных на самой популярной DevOps-платформе контейнерной виртуализации. Обзор операторов от Lyft, Google Cloud Platform, нативного расширения и возможностей платформы Ververica. Зачем и как выполнить развертывание Apache...
Хотя распределенные системы с микросервисной архитектурой дают множество преимуществ, процесс их проектирования достаточно сложен. В частности, нужно учитывать возможность возникновения неопределенности параллелизма или состояния гонки, и заранее предусмотреть способы решения этих проблем. Одним из них является Apache Kafka, которая гарантирует упорядоченность событий. Рассмотрим на практическом примере, как это работает. Что...
28 июня 2022 года в сотрудничестве с сообществом разработчиков Apache Spark компания Databricks анонсировала проект Lightspeed, новое поколение этого потокового движка. Читайте далее, что это такое и чем оно отличается от классического Apache Spark Structured Streaming. Потоковая обработка данных с Apache Spark Structured Streaming Потоковая передача событий весьма востребована современным...
Недавно мы писали про новую гибридную архитектуру Lakehouse, которая объединяет лучше из мира озер и хранилищ данных. Сегодня разберем принципы работы и особенности построения этой архитектуры данных, включая технологии ее реализации с точки зрения дата-инженера и уделим внимание организации конвейеров аналитики больших данных. Архитектурная парадигма Lakehouse Напомним, Lakehouse — это...
Недавно мы рассказывали про стратегии обработки ошибок в потоковых конвейерах данных на Apache NiFi. В продолжении этой темы, сегодня более детально разберем, с какими исключениями может столкнуться дата-инженер, о чем они говорят и как их обойти. Виды исключений Apache NiFi При разработке собственного процессора может возникнуть несколько различных неожиданных ситуаций....
Чтобы добавить в наши курсы для дата-инженеров и специалистов по Machine Learning еще больше практических примеров, сегодня рассмотрим, как построить ETL-конвейер для преобразования речи в текст с использованием Apache Kafka, Airflow и Spark. А также познакомимся с популярными фреймворками и готовыми сервисами распознавания речи. ETL-конвейер распознавания речи: используемые технологии Предположим,...
Сегодня в рамках обучения дата-инженеров разберем, как организовать логическое ветвление рабочего процесса в Apache AirFlow с помощью операторов. Какие операторы позволяют организовать условную логику в DAG, чем BranchPythonOperator отличается от ShortCircuitOperator, как запустить задачу в зависимости от времени и/или дня недели, а также результата выполнения SQL-запроса. Условная логика в DAG:...
Сегодня рассмотрим, с какими нетиповыми ошибками может столкнуться дата-инженер при работе с Apache Flink, а также как решить эти проблемы. Где и что править, когда сервер BLOB-объектов завис из-за слишком большого количества подключений, почему не хватает памяти при развертывании Flink-приложений в кластере Kubernetes и как ускорить инициализацию заданий. Особенности работы...