Мы уже рассказывали о важности этапа подготовки данных (Data Preparation), результатом которого является обработанный набор очищенных данных, пригодных для обработки алгоритмами машинного обучения (Machine Learning). Такая выборка, называемая датасет (dataset), нужна для тренировки модели Machine Learning, чтобы обучить систему и затем использовать ее для решения реальных задач. Однако, поскольку в...
CRISP-DM, SEMMA и другие стандарты Data Mining не случайно выделяют подготовку данных в отдельную фазу. Data Preparation - весьма трудоемкий итеративный процесс, который занимает до 80% всех затрат ресурсов и времени в жизненном цикле Data Mining и включает следующие задачи обработки исходных («сырых») данных [1]: Выборка данных – отбор признаков...
Сегодня большие данные и технологии распределенного реестра до сих пор являются самыми популярными ИТ-темами. Возможности их внедрения в каждую прикладную сферу, от банковской отрасли до медицины, обсуждаются на конференциях всех уровней, корпоративных совещаниях и государственных советах [1]. Принесет ли объединение Big Data и блокчейн дополнительные бонусы, в каких случаях не...
Иван Гуз, директор по аналитике и клиентскому сервису Avito, 24.04.2018 на митапе AI Community и AI Today для специалистов по Data Science в офисе компании [1] рассказал о самых главных проблемах, которые подстерегают исследователя данных на практических проектах и от чего не убережет даже подробно проработанный стандарт CRISP-DM. Из его...
Посмотрев выступление Станислава Гафарова [1], руководителя направления по развитию ИТ-систем АО «СберТех», от 24.04.2018 на митапе AI Community и AI Today для специалистов по Data Science в офисе Авито [2], мы составили ТОП-7 ошибок при работе с данными по методологии CRISP-DM. На основании жизненного цикла работы с информацией по стандарту...