Проблемы отладки конвейеров обработки данных в Apache AirFlow и способы их решения средствами самого фреймворка. Как дата-инженеру настроить мониторинг системных событий на уровне DAG или отдельной задачи: операторы, кластерные политики и обратные вызовы. Отладка конвейеров обработки данных в Apache AirFlow: проблемы и возможности Практикующий дата-инженер знает, как бывает сложно найти...
Мы уже рассказывали про задачи-зомби в Apache AirFlow и способы их устранения. Продолжая тему управления распределенными процессами, сегодня поговорим про задачи, зависшие в очереди и универсальное решение для борьбы с ними, которое будет реализовано в выпуске Apache AirFlow 2.6.0, о других новинках которого читайте здесь. Жизненный цикл задачи в Apache...
Недавно мы разбирали, как дата-инженеру написать собственный оператор Apache AirFlow и использовать его в DAG. Сегодня посмотрим, каким образом с этой задачей справляется модный ИИ под названием ChatGPT. GPT-генерация пользовательского оператора AirFlow Хотя Apache AirFow предоставляет множество операторов для выполнения самых разных задач, иногда дата-инженеру приходится писать свои собственные Python-классы,...
Как написать пользовательский оператор Apache AirFlow и использовать его в DAG. А также чем хороши функции обратного вызова вместо XCom, и когда их не следует применять. Создаем свой оператор AirFlow и используем его в DAG Однажды мы уже разбирали, как создать свой оператор Apache AirFlow на примере сенсора – оператора...
Как реализовать условную логику выполнения задач в DAG-конвейере Apache AirFlow, используя оператор ShortCircuitOperator. А также зачем использовать декоратор и при чем здесь правило триггера. Что такое ShortCircuitOperator в Apache AirFlow и как он работает Мы уже писали здесь и здесь, что с помощью операторов, существующих в Apache AirFlow, дата-инженер может...
Мы уже делали краткий обзор некоторых исполнителей задач Apache AirFlow. Сегодня рассмотрим более подробно механизмы запуска удаленных задач и разберемся, чем Celery Executor отличается от CeleryKubernetes Executor и как они работают. Виды и назначение исполнителей Apache AirFlow Напомним, Apache AirFlow состоит из нескольких компонентов: Веб-сервер, предоставляющий GUI для настройки DAG...
Что такое dbt, чем полезен этот инструмент для анализа и инженерии данных, зачем переносить в него бизнес-логику обработки данных и представлять эти задачи в DAG-конвейере Apache AirFlow. Python и SQL для анализа данных и дата-инженерии: versus или вместе? Распил крупных монолитных систем на множество автономных взаимодействующих друг с другом приложений...
Что такое backfill в Apache AirFlow и зачем дата-инженеру запускать эту команду CLI-интерфейса при управлении DAG. Разбираемся с параметрами, возможностями и исключениями. Что такое backfill в Apache AirFlow и чем это полезно при управлении DAG Иногда при управлении конвейерами обработки данных в Apache AirFlow дата-инженеру необходимо вернуться в прошлое, чтобы...
Как установить и отследить в Apache AirFlow зависимости экземпляров задач друг от друга, узнать о запуске конкретной задачи в DAG, использовать обратные вызовы и правила триггеров, а также шаблоны и макросы Jinja. Полезные примеры управления ETL-конвейерами для дата-инженера в GUI и CLI-интерфейсах. Как узнать время запуска последнего экземпляра задачи? Будучи...
Чтобы сделать наши курсы для дата-инженеров еще более интересными, сегодня рассмотрим несколько лучших практик разработки DAG в Apache AirFlow, а также поговорим про операторы, которые обеспечивают повторное использование и настраиваемый запуск задач в конвейере обработки данных. Еще 7 полезных практик работы с Apache AirFlow для дата-инженера В дополнению к тегированию...