Можно ли сочетать OLAP и OLTP-нагрузки в едином хранилище и как это сделать: гибридная транзакционно-аналитическая обработка в базах данных, возможности и проблемы этой архитектуры. Что такое HTAP Исторически хранилища данных принято делить на OLAP и OLTP с учетом их оптимизации для аналитических и транзакционных нагрузок. OLTP-системы (Online Transaction Processing) оптимизированы...
Чем синхронная вставка в ClickHouse отличается от асинхронной и как это настроить: лучшие практики и риски загрузки данных в колоночное хранилище. Синхронная вставка данных в ClickHouse Хотя скорость вставки данных в ClickHouse зависит от множества факторов, ее можно ускорить за счет асинхронных вставок, если предварительное пакетирование на стороне клиента невозможно....
Почему не рекомендуется публиковать в Kafka сообщения больших размеров, и как это сделать, если очень нужно: когда приходится перенастраивать конфигурации продюсера, топика и потребителя, и какие это параметры. Почему не нужно публиковать в Kafka сообщения больших размеров Apache Kafka, как и другие брокеры сообщений, оптимизирована для передачи данных небольшого размера....
Как именно формат, сортировка, сжатие и интерфейс передачи данных в ClickHouse влияют на скорость операций загрузки: бенчмаркинговое сравнение от разработчиков колоночной СУБД. В каком формате данные быстрее всего вставляются в ClickHouse Продолжая недавний разговор про вставку данных в ClickHouse, сегодня рассмотрим, ключевые факторы, которые особенно сильно влияют на скорость загрузки...
Почему в одной организации возникает рассогласование данных, чем опасна такая рассинхронизация, как ее обнаружить и устранить: подходы и решения для повышения качества данных. Что такое data silos и как найти локальные «болота данных» Рассогласование в данных возникает при разной логике обработки одной и той же информации. Это мешает принимать объективные...
Как выполняется вставка данных в ClickHouse, от чего зависит ее скорость и каким образом ее повысить: последовательность операций загрузки и ее оптимизации. От чего зависит скорость вставки данных в ClickHouse Поскольку ClickHouse часто используется для построения хранилищ или витрин данных, скорость загрузки данных в эту базу очень важна. Хотя на...
Денормализация таблиц, оптимизация SQL-запросов, словари вместо измерений и AggregatingMergeTree-движок с инкрементными матпредставлениями для приема измененных данных из PostgreSQL в ClickHouse. Оптимизация SQL-запросов Хотя передача изменений из PostgreSQL в ClickHouse может сопровождаться дублированием или потерями данных, эти проблемы решаемы, о чем мы рассказывали здесь и здесь. Однако, репликация данных из реляционной...
Пишем собственный плагин Trino для работы с пользовательским типом данных: практический пример создания и регистрации своих классов и pom-файла. Пример реализации своего плагина Trino О том, что гибкость Trino обеспечивается благодаря его плагинной архитектуре, я недавно писала здесь. Сегодня рассмотрим пример создания своего плагина, который реализует возможность работы с пользовательским...
Почему нельзя просто взять и удалить топик Apache Kafka: что проверить и перенастроить, с помощью каких инструментов и чем можно обойтись вместо непосредственного удаления. Проблемы удаления топика Apache Kafka и их решения Когда у вас есть собственный инстанс или даже кластер Apache Kafka с полными правами на все манипуляции с...
Почему Trino такой гибкий: плагинная архитектура SQL-движка, зависимости SPI-интерфейса и последовательность создания пользовательского плагина. Плагинная архитектура Trino и как она работает Благодаря настраиваемым коннекторам Trino может подключаться к любым источникам, от реляционных баз данных до NoSQL-хранилищ. При этом коннекторы – это частный случай плагина. С точки зрения проектирования ПО, Trino...