Планируем и запускаем дата-конвейеры с Apache AirFlow и Dagster

Продолжая сравнивать Apache AirFlow с Dagster, сегодня рассмотрим особенности развертывания и эксплуатации этих оркестраторов ETL-процессов и конвейеров обработки данных. Читайте далее о плюсах изоляции процессов, отделения системных служб от пользовательского кода, сложностях планирования и запуска задач, а также способах их решения с помощью современных инструментов дата-инженера. В изолятор: как развернуть...

Apache AirFlow vs Dagster: еще одно сравнение Big Data и ML-оркестраторов

Apache AirFlow – один из самых популярных инструментов современного дата-инженера для планирования и оркестрации batch-процессов. Повторить успех этого фреймворка стремятся многие компании и Big Data энтузиасты: недавно мы рассказывали про ViewFlow от DataCamp, а также писали про Luigi, Argo, MLFlow и KubeFlow. Сегодня рассмотрим Dagster – еще одну альтернативу Apache...

Аналитика больших данных с Apache Airflow без дата-инженера: Viewflow от DataCamp

В этой статье поговорим про Viewflow: что такое, как устроено, чем полезно аналитикам данных и Data Scientist’ам. Встречайте новый фреймворк на базе Apache AirFlow от DataCamp – американского edu-стартапа в области ИИ, который упрощает создание и управление материализованными представлениями на SQL, R и Python в концепции low code, т.е. практически...

3 оператора Apache Airflow для контейнерных конвейеров данных

Совмещение Airflow с Kubernetes уже становится стандартом де-факто для дата-инженеров. Недавно мы рассказывали про 3 популярные среды развертывания и сопровождения этого ETL-фреймворка в Kubernetes. Продолжая эту тему, сегодня рассмотрим, какие операторы использовать для контейнерного запуска batch-задач, а также поговорим о том, как Docker-образы помогут решить проблему изменения версий Python и...

Машинное обучение с Apache Spark: битва пакетов или отличия библиотек MLLib от ML

Сегодня рассмотрим Apache Spark с точки зрения Data Science специалиста: поговорим про сходства и отличия библиотек машинного обучения в этом фреймворке. Также ответим на вопрос «Spark ML vs MLLib», разберем, зачем Data Scientist’у и аналитику больших данных нужны курсы по Apache Spark, а в заключение отметим наиболее важные улучшения библиотеки...

На заметку разработчику: 3 причуды Apache Spark и как с ними бороться

Развивая наши курсы по Apache Spark, сегодня мы рассмотрим несколько особенностей, с разработчик которыми может столкнуться при выполнении обычных операции, от чтения архивированного файла до обращения к сервисам Amazon. Читайте далее, что не так с методом getDefaultExtension(), зачем к AWS S3 так много коннекторов и почему PySpark нужно дополнительно конфигурировать...

Вспомнить все: 6 сегментов памяти Apache Spark и параметры их конфигурирования

В этой статье продолжим говорить про обучение разработчиков Apache Spark и рассмотрим, какие сегменты памяти есть в этом Big Data фреймворке и как с ними работать наиболее эффективно. Читайте далее, почему процессы PySpark и SparkR потребляют внешнюю память, чем пользовательская память кучи JVM отличается от памяти хранилища и какие конфигурации...

15 советов по работе с DAG в Apache AirFlow: лучшие практики дата-инженера

Практическое обучение дата-инженеров – это не просто курсы по основам Big Data, а полезные рекомендации с реальными примерами. Поэтому сегодня рассмотрим, как работать с DAG в Apache AirFlow еще эффективнее с помощью параметров конфигурации, плагинов, меток, шаблонов, переменных и еще 10 различных инструментов. 15 лучших практики для DAG в Apache...

5 преимуществ разделения пакетов в Apache AirFlow 2.0 или как создать свой провайдер с блэкджеком и хуками

Чтобы добавить в наши обновленные авторские курсы для дата-инженеров по Apache AirFlow еще больше интересного, сегодня продолжим разбирать полезные дополнения релиза 2.0 и поговорим, почему разделение фреймворка на пакеты делает его еще удобнее. Также рассмотрим практический пример создания общедоступного провайдера из локального Python-пакета с собственными операторами, хуками и прочими компонентами....

3 новинки для DAG в Apache AirFlow 2.0

В поддержку наших полностью обновленных авторских курсов для инженеров данных по Apache AirFlow, сегодня рассмотрим новые способы определения DAG, которые были добавлены в релизе 2.0. Читайте далее, что под капотом TaskFlow API, как поместить задачи в TaskGroup, чем dag_policy отличается от task_policy и почему все это упрощает работу инженера Big...

Поиск по сайту