Аналитика больших данных: цифровая трансформация Renault с Apache Spark и сервисами Google

Сегодня разберем кейс компании Renault по масштабированию своей цифровой платформы и снижению затрат с помощью BigQuery и Apache Spark на Google Dataproc. Цифровизация в автомобильной промышленности: конвейер сбора и аналитики больших данных с производства средствами Google сервисов и снижение затрат на облако в 2 раза через изменение конфигурации Spark SQL....

Тонкости потоковой передачи данных в BigQuery из Apache Kafka и Spark: 5 неочевидных особенностей

В рамках курсов для дата-инженеров и разработчиков распределенных приложений, сегодня рассмотрим пример построения системы потоковой передачи для аналитики больших данных на базе Apache Kafka, Spark и Google BigQuery. Читайте далее про Proof of Concept для конвейера продуктовой аналитики, который обрабатывает 50 миллиардов событий каждый день, и какие важные уроки ИТ-архитектор...

Как лучше настроить GPORCA для оптимизации SQL-запросов в Greenplum

В рамках программы курсов по Greenplum и Arenadata DB, сегодня рассмотрим важную для разработчиков и администраторов тему об особенностях оптимизатора SQL-запросов GPORCA, который ускоряет аналитику больших данных лучше встроенного PostgreSQL-планировщика. Читайте далее, как выбирать ключ дистрибуции, почему для GPORCA важна унифицированная структура многоуровневой партиционированной таблицы и каким образом оптимизаторы обрабатывают...

Еще 4 полезных совета по Apache Spark для разработчиков и дата-аналитиков

Сегодня в рамках обучения дата-аналитиков и разработчиков Spark-приложений, рассмотрим еще несколько особенностей этого фреймворка. Почему count() работает по-разному для RDD и DataFrame, как отличается уровень хранения при применении метода cache() для этих структур, когда использовать SortWithinPartitions() вместо sort(), а также парочка тонкостей обработки Parquet-таблиц в Spark SQL и кэширование метаданных...

Зачем вам Beekeeper или как очистить метаданные таблицы Apache Hive

Сегодня рассмотрим, что такое Beekeeper и как этот сервис помогает администраторам Hadoop и пользователям Apache Hive очищать метаданные этого NoSQL-хранилища. Читайте далее, зачем удалять устаревшие пути из Metastore и как настроить конфигурацию Hive-таблиц для автоматического прослушивания событий их изменения. Для чего очищать потерянные метаданные в Apache Hive Напомним, Apache Hive...

Greenplum vs PostgreSQL: 7 сходств и 3 отличия

Поскольку Greenplum и Arenadata DB основаны на популярной open-source СУБД PostgreSQL, сегодня разберем, чем они отличаются от этой объектно-реляционной базы данных. Далее вас ждет краткий и понятный ответ на вопрос Greenplum vs PostgreSQL: сходства и отличия этих систем с учетом аналитики больших данных и практических кейсов дата-инженерии. Что общего между...

Как GPORCA ускоряет аналитику больших данных в Greenplum: оптимизация SQL-запросов с JOIN и немного математики

Обучая разработчиков и администраторов Greenplum, а также в рамках продвижения курсов по Arenadata DB, сегодня рассмотрим, как SQL-оптимизатор ORCA ускоряет аналитику больших данных, позволяя реализовать многостороннее соединение таблиц через JOIN-запросы. Читайте далее, что такое GPORCA, как его использовать, насколько он эффективен по сравнению с другими планировщиками SQL-запросов в этой MPP-СУБД...

Что такое драйвер JDBC и почему он важен для распределенной работы в Hive

В прошлый раз мы говорили про особенности работы с основными join-операциями в Hive. Сегодня поговорим про использование JDBC-драйвера при работе в распределенной Big Data платформе Apache Hive. Читайте далее про особенности использования этого драйвера при работе в распределенной среде Hive. Использование драйвера JDBC в распределенной СУБД Apache Hive Драйвер JDBC...

Как создать микросервисный ML-конвейер в реальном времени на Apache Kafka и Spark

Чтобы дополнить наши курсы по Kafka и Spark интересными примерами, сегодня рассмотрим практический кейс разработки микросервисного конвейера машинного обучения на этих фреймворках. Читайте далее, зачем выносить ML-компонент в отдельное Python-приложение от остальной части Big Data pipeline’а, и как Docker поддерживает эту концепцию микросервисного подхода. Постановка задачи и компоненты микросервисного ML-конвейера...

Зачем Apache Hive внешняя база данных для MetaStore: смотрим на примере Arenadata Hadoop 2.1.4 со Spark 3

В июле 2021 года «Аренадата Софтвер», российская ИТ-компания разработчик отечественных решений для хранения и аналитики больших данных, представила минорный релиз корпоративного дистрибутива на базе Apache Hadoop — Arenadata Hadoop 2.1.4. Главными фишками этого выпуска стало наличие 3-й версии Apache Spark и External PostgreSQL для Hive MetaStore. Сегодня рассмотрим, что именно...

Поиск по сайту