Недавно мы писали об изменении статуса и улучшении протокола KRaft в Apache Kafka 3.3. Сегодня погрузимся в эту тему чуть глубже и рассмотрим, как отказ от Zookeeper влияет на количество разделов и возможность одного и того же кластера Kafka с одним набором топиков обслуживать разные типы приложений в различных бизнес-сценариях....
Чем опасны дубли данных при их потоковой обработке и как реализовать дедупликацию в Apache Flink SQL. Смотрим на практическом примере для обучения дата-инженеров и разработчиков распределенных приложений. Потоковая дедупликация данных в Apache Flink SQL Apache Flink можно назвать уникальный фреймворком для разработки распределенных приложений в области Big Data, который унифицирует...
Как реализовать CDC для Delta Lake: разбираемся с функцией Change Data Feed от Databricks, которая позволяет быстро узнать обо всех изменениях строк в дельта-таблицах озера данных. Польза и принципы работы CDF для дата-инженера и архитектора данных. CDC для Delta Lake Идея сбора и обработки не всего объема данных, а только...
Что такое горячие точки в Apache HBase, почему они возникают, чем опасны и как их избежать. Для этого заглянем под капот NoSQL-хранилища, чтобы разобраться с особенностями хранения данных по ключу строки. Что такое горячие точки в кластере Apache HBase и почему они случаются Apache HBase представляет собой колоночно-ориентированное мультиверсионное хранилище...
В 7-м релизе Greenplum, о котором мы писали здесь и здесь, вышло много изменений. Одним из них стал целый набор обновленных функций, связанных с партиционированием таблиц. Читайте далее, как Greenplum стал еще на шаг ближе к PostgreSQL и что изменилось в части синтаксиса SQL-запросов. Управление разделами в Greenplum и PostgreSQL...
Мы уже писали, как ускорить выполнение заданий Spark SQL по чтению данных из JDBC-источников. В продолжение этой важной темы для обучения дата-инженеров и разработчиков распределенных приложений, сегодня рассмотрим, зачем настраивать опции функции spark.read() и как это сделать наиболее эффективно. Скорость выполнения SQL-запросов и параметры чтения данных из JDBC-источников в Apache...
23 января 2023 года вышел очередной релиз самой популярной платформы потоковой передачи событий. Разбираемся с новинками Apache Kafka 3.3.2: готовность протокола KRaft, новый API для метрик, разделитель по умолчанию для записей без ключа, исправления и улучшения, важные для дата-инженера и администратора кластера. Apache Kafka 3.3.2: главные новинки и изменения Минорный...
Чем целостность данных отличается от их качества и как реализуются ACID-свойства распределенных транзакций в Big Data системах. Разбираем понятия и технологии, важные для обучения ИТ-архитекторов и дата-инженеров. Целостность и качество данных: versus или вместе? Целостность данных и качество данных — связанные, но разные понятия, важные для дата-инженера. Целостность описывает точность...
28 октября 2022 года вышел мажорный релиз Apache Flink. Что нового в выпуске 1.16.0, который сегодня имеет официальный статус стабильного: зачем нужен SQL Gateway, как улучшен Changelog State Backend, какие DDL-выражения добавлены и зачем внесена поддержка кэширования результата преобразования в PyFlink. Главные обновления Apache Flink 1.16 В версии 1.16 Flink...
Что означает кластеризация таблиц в PostgreSQL, как это связано с индексацией и очисткой данных, чем полезно применение команды CLUSTER для AO/CO-таблиц в Greenplum 7, а также какой SQL-запрос поможет найти все кластеризованные таблицы в текущей базе данных. Как работает кластеризация таблиц в PostgreSQL Будучи основанной на объектно-реляционной базе данных PostgreSQL,...
Чем задание в Spark-приложениях отличается от задачи, зачем нужны этапы и при чем здесь драйверы с исполнителями. Разбираемся с основами разработки в самом популярном движке для распределенных вычислений: ликбез для дата-инженеров. Основные концепции Spark-приложений Приложение Spark — это программа, созданная с помощью Spark API и работающая в совместимом с этим...
Политики хранения, сжатия и очистки данных в топиках Apache Kafka: какие конфигурации нужно настроить, чтобы работать с файлами распределенных логов наиболее эффективно. Ликбез для администратора кластера Kafka и дата-инженера. Хранение данных в Apache Kafka Мы уже писали, что топик в Apache Kafka представляет собой не физическое, а логическое хранение данных....
В этой статье для обучения дата-инженеров рассмотрим, как организовать сбор измененных данных из реляционных СУБД, построив CDC-конвейер с помощью Apache NiFi. А также разберем, зачем процессоры этого потокового ETL-маршрутизатора используют технологию веб-хуков. ETL-конвейер для DWH и Data Lake В общем случае сбор данных из реляционных и нереляционных источников и построение...
Интерактивные блокноты Jupyter стали фактически стандартом де-факто для Data Scientist’ов, использующих Python. Многие дата-инженеры и разработчики Spark тоже используют этот легковесный, но очень удобный инструмент. Однако, чтобы применять его для промышленной разработки Big Data приложений, нужно подключить сервер Jupyter к кластеру Spark. Читайте, как это сделать, если кластер Apache Spark...
Захват измененных данных считается довольно известным паттерном организации ETL-процессов для корпоративных хранилищ и озер данных. Как реализуется CDC-технология, по каким шаблонам, что их ограничивает и чем опасен дрейф изменений в Change Data Capture. Паттерны и принципы реализации захвата измененных данных Эффективность эксплуатации озера данных зависит от ETL-процессов, поскольку объемы данных...
В этой статье рассмотрим настройку инфраструктуры Kubernetes для потоковой платформы комплексных мобильных приложений на основе Apache Kafka. Что поможет добиться оптимальной масштабируемости приложений-потребителей и высокой доступности всей Big Data системы. Проблемы масштабирования платформы Grab из приложений-потребителей Apache Kafka Grab считается ведущей платформой суперприложений в 8 странах Юго-Восточной Азии, которая предоставляет...
Мы уже писали о важности резервного копирования данных в Apache HBase на примере ИТ-компании Clairvoyant. Сегодня рассмотрим опыт индийской компании Myntra, которая предложила простую методику создания инкрементных бэкапов для Apache HBase 2.1.4 и Hadoop 2.7.3, а также восстановления нужных данных из этих резервных копий в BLOB-хранилищах по требованию пользователя. 5...
Что такое SQL-оператор VACUUM, зачем эта команда нужна в Greenplum и как она работает. Разбираемся с таблицами системного каталога и тонкостями ускорения SQL-запросов в самой популярной MPP-СУБД. Что такое сборка мусора в Greenplum и PostgreSQL Напомним, в объектно-реляционной базе данных PostgreSQL, на которой основана MPP-СУБД Greenplum, о чем мы писали...
В этой статье для обучения дата-инженеров и ИТ-архитекторов рассмотрим, как Apache Spark Structured Streaming помогает реализовать самообслуживаемый сервис потоковой передачи данных в Delta Lake. А также вспомним каноническую 3-хслойную модель этого уровня хранения от Databricks. Много потоковых сценариев в одном приложении Apache Spark Structured Streaming Мы недавно писали, что архитектуры,...
Сегодня заглянем под капот Apache NiFi, чтобы понять, какие данные хранит этот потоковый ETL-маршрутизатор, зачем и где. Репозитории Apache NiFi для администратора, дата-инженера и проектировщика конвейеров обработки данных: как они устроены и какие практики улучшают их работу. Репозитории Apache NiFi: что это такое и зачем они нужны В Apache NiFi...