Apache Spark 3.3.0: ТОП-10 новинок июльского релиза 2022

16 июня 2022 года вышла новая версия Apache Spark – 3.3.0. Разбираем главные фичи этого минорного релиза, особенно важные для дата-инженера и разработчика распределенных приложений: от расширения поддержки ANSI SQL до профилирования UDF на Python. Главные изменения Apache Spark 3.3.0 Apache Spark 3.3.0 — это четвертый релиз линейки 3.x, в...

Происхождение данных в Apache Spark со Spline и не только

Вчера мы рассказывали, почему важна наблюдаемость данных какие платформы помогают комплексно обеспечить все ее аспекты. В продолжение этой темы сегодня заглянем под капот происхождения данных в Apache Spark с помощью агента Spline и других способов. Трудности data lineage в Apache Spark Когда конвейер данных выходит из строя, дата-инженеру нужно скорее...

Мониторинг заданий Apache Spark с помощью слушателей

Что такое SparkListener, какие встроенные слушатели бывают в Apache Spark, как написать собственный перехватчик событий и зачем это нужно разработчику распределенного приложения. Также рассмотрим, как реализовать свой слушатель для приложения на PySpark и зачем включать уровень логирования INFO для SparkContext. Что такое слушатель Spark Apache Spark позволяет быстро обрабатывать большие...

Как определить оптимальную конфигурацию Spark-приложения

Сколько ядер ЦП выделить на каждый исполнитель и каково оптимальное количество памяти для Spark-приложения при статическом и динамическом выделении ресурсов. Важные вопросы эффективной утилизации кластера, с которыми сталкивается каждый дата-инженер и разработчик распределенных программ. Запуск распределенного приложения через spark-submit Повысить эффективность работы приложения Apache Spark можно не только через оптимизацию...

Роль Tungsten в Apache Spark

Что такое Tungsten, зачем он нужен в Apache Spark и как этот проект устраняет узкие места вычислительного движка, чтобы повысить его производительность и эффективность утилизации ресурсов за счет приближения JVM к bare metal. Рассматриваем самые важные для разработчика распределенных приложений особенности и разбираемся, при чем здесь вольфрам и почему с...

Оконные функции PySpark в Google Colab: пара примеров

Специально для обучения начинающих аналитиков данных и дата-инженеров сегодня рассмотрим примеры выполнения простых SQL-запросов и оконных функций в Apache Spark на Google Colab. Как быстро проанализировать датафрейм из CSV-файлов с помощью нескольких строк на PySpark. Запуск и использование PySpark в Google Colab Предположим, необходимо определить потенциальный доход от проведения обучающих...

Анализ данных Youtube в реальном времени с Apache NiFi, Kafka и Spark Streaming

В этой статье для дата-инженеров рассмотрим пример конвейера анализа потокового видео с Youtube-каналов на Kafka, Spark Streaming и Elasticsearch c Kibana, связанных через процессоры Apache NiFi. Постановка задачи: ETL-конвейер анализа потоковых данных с Youtube Потоковые данные непрерывно генерируются тысячами источников, которые отправляют записи одновременно и в небольших размерах (порядка килобайт)....

3 режима вывода в Apache Spark Structured Streaming

Какие бывают режимы вывода в структурированной потоковой передаче Spark, чем они отличаются и как их использовать на практике: разбираемся на практическом примере. Краткий ликбез по output modes в Apache Spark Structured Streaming для обучения дата-инженеров и разработчиков распределенных приложений. Что такое режимы вывода в Apache Spark Structured Streaming Apache Spark...

3 метода управления разделами в Apache Spark

Мы уже рассказывали про функции перераспределения данных по разделам coalesce() и repartition(). Сегодня сравним их работу с еще одним методом управления разделами в Apache Spark и разберем, как все они могут помочь дата-инженеру и разработчику распределенных приложений повысить эффективность этого популярного фреймворка аналитики больших данных. Отобрать и поделить: лучшие практики партиционирования данных...

Настройка кластера Apache Spark и Hive на Hadoop

Как настроить Apache Spark 3.0.1 и Hive 3.1.2 на Hadoop 3.3.0: тонкости установки и конфигурирования для обучения администраторов кластера и инженеров с примерами команд и кода распределенных приложений. Запуск Spark-приложения на Hadoop-кластере Прежде всего, для настройки кластера Apache Spark нужен работающий кластер Hadoop. Сама установка и настройка выполняется в 2...