Что такое SnappyData (TIBCO ComputeDB) и при чем здесь Apache Spark

Недавно мы уже упоминали о некоторых продуктах на базе Apache Spark. Продолжая обучение основам Big Data, сегодня рассмотрим, что такое SnappyData или TIBCO ComputeDB и как это связано с популярным фреймворком разработки распределенных приложений аналитики больших данных. Кому и зачем нужны дополнительные решения поверх Apache Spark При всей популярности Apache Spark,...

Apache Spark для инженера данных: 3 полезных инструмента построения ETL-конвейеров

Дополняя наши курсы дата-инженеров полезными примерами, сегодня рассмотрим, как упростить разработку и мониторинг ETL-конвейеров с помощью дополнительных технологий Big Data, совместимых с Apache Spark. Читайте далее, когда и зачем инженеру данных пригодятся SaaS-продукт Prophecy.io, движок StreamSets Transformer и REST-интерфейс Apache Livy, а также как все они связаны со Spark. 3...

Что не так с конвейером Apache Kafka и Spark Structured Streaming для потоковой аналитики больших данных в AWS: практический пример

Чтобы дополнить наши курсы по Spark для разработчиков распределенных приложений и инженеров данных практическими примерами, сегодня рассмотрим кейс американской ИТ-компании ThousandEyes, которая разрабатывает программное обеспечение для анализа производительности локальных и глобальных сетей. Читайте далее, как создать надежный конвейер и устойчивое озеро данных (Data Lake) для быстрой аналитики Big Data в...

Конфигурирование исполнителей Spark-заданий в AWS: ядра ЦП и проблемы с памятью

Продолжая вчерашний разговор про оптимизацию Spark-приложений в облачном кластере Amazon Web Services, сегодня рассмотрим типовую последовательность действий по конфигурированию заданий и настройке узлов для снижения затрат на аналитику больших данных. А также разберем, какие проблемы с памятью исполнителей могут при этом возникнуть, и как инженеру Big Data их решить. Еще...

Как сэкономить на AWS-кластере: экономика Big Data и конфигурирование облачных Spark-приложений

В рамках обучения администраторов Apache Hadoop и инженеров Big Data, сегодня поговорим про стоимость аналитики больших данных с помощью Spark-приложений в облачном кластере Amazon Web Services и способы снижения этих затрат за счет конфигурирования заданий и настройки узлов. Читайте в этой статье, как число процессорных ядер в исполнителях Spark-заданий формирует...

Что такое бакетирование таблиц в Apache Spark SQL и как это улучшает аналитику больших данных

Сегодня поговорим про бакетирование таблиц в Apache Spark для оптимизации производительности заданий и снижения затрат на кластер при их выполнении. Читайте далее, что такое Bucketing в Spark SQL и как это предотвращает операции перетасовки в приложениях аналитики больших данных. Что такое Bucketing и зачем это нужно в Big Data Бакетирование...

Почему ваши Spark-приложения такие медленные: устраняем задержки аналитики Big Data

Недавно мы уже рассказывали про ускорение целых аналитических конвейеров на Apache Spark и отдельных задач, а также рассматривали способы оптимизации Shuffle-операций в SQL-модуле этого Big Data фреймворка. Сегодня разберем, какие факторы провоцируют задержки в Spark-приложениях, и как дата-инженер может их найти, чтобы устранить причины и следствия этих проблем. Задержки Spark-приложений...

3 задания по Apache Hadoop для чайников: развлекательная проверка знаний

Сегодня в качестве пятничного развлечения для дата-инженеров, разработчиков распределенных приложений, администраторов, аналитиков и других специалистов по большим данным мы приготовили небольшой квиз по Apache Hadoop. Проверьте свое знание главной технологии Big Data, решив кроссворд, филворд и небольшой тест по основным компонентам и главным принципам работы этой платформы хранения и аналитики...

Большие данные с малыми затратами: как снизить стоимость OLAP-аналитики Big Data в Delta Lake на AWS с Apache Kafka и Spark

Хорошие курсы инженеров данных – это не просто обучение отдельной Big Data технологии, такой как Apache Hadoop, Spark или Kafka, а жизненные примеры их практического использования в реальном бизнесе. Поэтому сегодня мы приготовили для вас кейс оптимизации стоимости и скорости OLAP-аналитики больших данных в облачном Delta Lake на Amazon Web...

Быстрая OLAP-аналитика больших данных в Delta Lake c Apache Spark SQL и Presto

В этой статье рассмотрим, как сделать SQL-запросы к колоночному хранилищу больших данных с поддержкой ACID-транзакций Delta Lake еще быстрее с помощью Apache Presto. Читайте далее про синергию совместного использования Apache Spark и Presto в Delta Lake для ускорения OLAP-процессов при работе с Big Data. Еще раз об OLAP: схема звезды...

Как читать медицинские снимки с Apache Spark: Big Data библиотека для быстрой обработки DICOM-файлов

Продвигая наши курсы для разработчиков Spark с примерами реальных систем аналитики больших данных, сегодня рассмотрим библиотеку для чтения файлов формата DICOM от индийской компании Abzooba. Читайте далее, как автоматизировать поиск по миллиардам медицинских изображений с помощью машинного обучения и технологий Big Data: Apache Spark, Hadoop, Kafka, Elasticsearch и Kibana. Что...

Как протестировать Big Data Pipeline: тесты для Hadoop-конвейеров в Spark и Airflow

Поскольку курсы инженеров Big Data предполагают практическое обучение на реальных кейсах, сегодня поговорим про тестирование конвейеров обработки и аналитики больших данных и разберем несколько прикладных примеров для компонентов экосистемы Apache Hadoop. Читайте далее про проверку работоспособности, а также поиск ошибок в Spark-заданиях и DAG-цепочках Airflow. Конвейер для конвейера: сложности тестирования...

Быстрее и безопаснее: потоковая аналитика больших данных для трекинга самолетов

Чтобы показать, насколько разной бывает аналитика больших данных, сегодня рассмотрим кейс международной компании Spidertracks, которая с помощью технологий Big Data создает ИТ-решения для отслеживания, связи и управления безопасностью воздушных судов. Читайте далее, почему для потоковой обработки событий был выбран Kinesis Analytics for SQL, а не конвейер из Apache Kafka и...

Конвейер CDC для Databricks Delta Lake: пример быстрого сбора и аналитики Big Data с Apache Kafka и Spark

Сегодня продолжим разбираться с реализацией CDC-подхода в современных Big Data решениях и погрузимся в Databricks Delta Lake – облачный уровень хранения и аналитики больших данных с поддержкой ACID-транзакций. Читайте далее про переход от ночных ETL-пакетов с Informatica к быстрому обновлению данных в Amazon S3 на конвейере Spark и Kafka. Возможности...

CDC для потоковой аналитики Big Data с Apache Kafka и Spark: 3 практических примера

Вчера мы упоминали про CDC-подход в проектировании транзакционных систем аналитики больших данных на базе Apache Kafka и Spark Streaming. Сегодня рассмотрим подробнее примеры такого применения технологий Big Data и лучшие практики Change Data Capture в потоковой обработке финансовых и других транзакций. Зачем нужны потоковые конвейеры транзакционной обработки Big Data на...

Что не так с real-time обработкой транзакций в конвейере Apache Kafka-Spark Streaming: 3 проблемы и способы их решения

В этой статье рассмотрим особенности совместного использования Apache Kafka и Spark Streaming для обработки финансовых транзакций в режиме онлайн. Читайте далее про типовые кейсы практического применения конвейера аналитики больших данных на базе Kafka и Spark, а также проблемы или технологические особенности такой Big Data системы и пути обхода этих ограничений....

Взболтать, но не смешивать: оптимизация вычислений в Apache Spark SQL

Продолжая разговор про оптимизацию Apache Spark и повышение эффективности Big Data приложений, сегодня рассмотрим способы ускорения Shuffle-операций в Spark SQL, разберем, чем хороши широковещательные JOIN-операции и как количество разделов влияет на производительность запросов в распределенных приложениях аналитики больших данных. 4 способа оптимизации Shuffle-операций При аналитике больших данных с помощью Apache...

3 легких способа ускорить отдельные задачи Apache Spark

Недавно мы рассматривали, как повысить производительность конвейеров Apache Spark и повысить скорость распределенных приложений для аналитики больших данных. Сегодня разберемся, почему тормозят отдельные Spark-задачи и как их ускорить. Читайте далее про инициализацию Спарк-контекста, предзагрузку артефактов и применение клиентского режима. Почему некоторые задачи в быстром Apache Spark выполняются так медленно Напомним,...

Что такое Big Data Reconciliation: согласование больших данных c Apache Spark

Мы уже рассказывали, почему качество данных является важнейшим аспектом разработки и эксплуатации Big Data систем. Приемлемое для эффективного использования качество массивов информации достигается не только с помощью процессов подготовки датасета к машинному обучению и профилирования данных, но и за счет их согласования. Читайте далее, что такое Data reconciliation, зачем это...

А можно дешевле: снижаем стоимость аналитики Big Data в приложениях Apache Spark

Вчера мы говорили про ускорение аналитики больших данных в конвейере из множества заданий Apache Spark. Продолжая речь про обучение инженеров данных, сегодня рассмотрим, как снизить стоимость выполнения Spark-приложений, сократив накладные расходы на обработку Big Data и повысив эффективность использования кластерной инфраструктуры. Экономика Big Data систем: распределенная разработка и операционные затраты...