Недавно я писала, как с помощью source-коннектора Debezium организовать потоковый захват изменения данных из таблицы PostgreSQL путем публикации CDC-событий в Apache Kafka. Продолжая эту тему, сегодня покажу пример визуализации аналитики этих данных в Kibana, предварительно загрузив их в Elasticsearch с sink-коннектором Aiven. Постановка задачи и проектирование конвейера Как обычно, в...
Что такое словарь в ClickHouse, какие бывают словари, как их создать и каким командами к ним обращаться. Пара примеров со словарями в самой популярной колоночной аналитической СУБД. Что такое словарь в ClickHouse Как колоночная база данных, ClickHouse предназначена для аналитической обработки огромных объемов данных в реальном времени. Аналитические сценарии предполагают...
Преимущества методологии Data Vault для проектирования архитектуры данных Lakehouse, а также лучшие практики ее использования с максимальной эффективностью для корпоративного хранилища. Принципы методологии Data Vault и их применение к проектированию DWH Существует множество различных методологий проектирования данных, которые можно использовать при разработке аналитической системы, например, модели звезды и снежинки, подходы...
Как key-value СУБД Redis может работать с потоковыми данными и чем Pub/Sub и Streams отличаются от Apache Kafka. Сравнение и рекомендации по использованию. Потоковое сохранение данных Redis Будучи очень быстрым key-value хранилищем, NoSQL-СУБД Redis часто используется в качестве слоя кэширования для разгрузки основной базы данных. В отличие от многих других...
Насколько быстро ClickHouse выполняет SQL-запросы: тестирование СУБД в открытой онлайн-песочнице. Примеры запросов и время их выполнения. Работа с онлайн-песочницей Clickhouse: выполнение SQL-запросов Будучи реляционной аналитической СУБД, ClickHouse позволяет обрабатывать гигабайты данных в реальном времени. Архитектурные особенности, благодаря которым реализуется такая скорость, мы недавно разбирали здесь. Чтобы оценить это на практике,...
Сходства и различия популярных реляционных аналитических СУБД с открытым исходным кодом: что общего у Greenplum с ClickHouse, чем они отличаются, что и когда выбирать. Greenplum и Clickhouse: обзор возможностей для аналитики больших данных Обе СУБД являются реляционными и относятся к классу OLAP-систем, т.е. ориентированы на аналитические варианты использования, т.е. чтение...
Что не так с Neosemantics и зачем нужна очередная библиотека для Neo4j: знакомство с Python-пакетом для RDF-графов rdflib-neo4j. Возможности, ограничения и пример использования. Что не так с Neosemantics и зачем нужна очередная библиотека для Neo4j Что такое RDF-графы, триплеты и плагин Neosemantics для работы с этими концепциями в графовой СУБД...
В чем разница между потоковой передачей событий и источником событий и при чем здесь Apache Kafka: разбираемся с паттернами проектирования событийно-ориентированной архитектуры. 2 паттерна проектирования EDA-архитектуры Напомним, что сегодня для построения сложных систем, зачастую состоящих из множества взаимодействующих компонентов, и реактивно реагирующих на события внешнего мира, активно используется идея архитектуры,...
Что не так с большими языковыми моделями, как RAG-приложения расширяют возможности LLM и зачем в графовой СУБД Neo4j добавлена поддержка векторного индекса. Зачем нужны RAG-приложения: ограничения базовых LLM-сетей С появлением ChatGPT и других генеративных нейросетей, большие языковые модели (LLM, Large Language Models) стали активно применяться для решения множества бизнес-задач, связанных...
Как организовать миграцию схемы Neo4j и импортировать в графовую базу данные из реляционных систем. Знакомимся с инструментами проекта Neo4j Labs: Neo4j-ETL и Neo4j-Migrations. Как работает Neo4j-ETL В рамках развития своих продуктов, таких как графовая СУБД Neo4j и экосистема элементов вокруг нее (Graph Data Science, Neo4j Bloom, Neo4j Browser и пр.),...