Мартовский выпуск Apache Flink: обзор релиза 1.17.0

23 марта 2023 года вышел очередной релиз Apache Flink. Разбираемся с главными новинками выпуска 1.17.0: полезные фичи, исправленные ошибки и улучшения для дата-инженера и разработчика распределенных приложений. Новинки пакетной обработки В Apache Flink 1.17 внесено множество изменений в области пакетной и потоковой обработки. В частности, добавлен новый пакетный Streaming Warehouse...

Унификация пакетной и потоковой обработки в Delta-архитектуре с LakeHouse

Как Lakehouse объединяет пакетную и потоковую обработку, какие проблемы возникают при реализации этой гибридной архитектуры данных и каким образом они решаются с помощью Delta-подхода и Apache Spark Structured Streaming. Краткая история появления дельта-архитектуры от лямбда- и каппа-моделей Мир больших данных постоянно развивается: появляются новые технологии и архитектурные шаблоны. В частности,...

Что такое Memgraph и чем она отличается от Neo4j: сравнение графовых СУБД

В рамках продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях сегодня познакомимся с графовой резидентной СУБД Memgraph и сравним ее с Neo4j, определив достоинства, недостатки и варианты использования в задачах аналитики больших данных. Memgraph vs Neo4j Memgraph — это высокопроизводительная графовая СУБД с открытым исходным кодом, которая хранит и...

Графовая аналитика в Greenplum и PostgreSQL: обзор расширений и возможностей

Инструменты графовых алгоритмов для аналитики больших данных в PostgreSQL и Greenplum: обзор расширений и возможностей. Знакомимся с Apache AGE и MADlib. Графовая аналитика в PostgreSQL Реляционные СУБД отлично подходят для хранения данных с четкой структурой практически в любой предметной области и предлагают широкие возможности аналитической обработки таких данных. Но иногда реляционная...

EDA-архитектура данных в DWH: моделирование и реализация

Чем схема, применяемая к данным, при чтении отличается от схемы при записи, почему она вызывает GIGO-проблему в Data Lake, и как применить принципы функциональной дата-инженерии к архитектуре данных, управляемой событиями. Схема при чтении или при записи: главное отличие NoSQL-решений от реляционных СУБД NoSQL-решения и Apache Hadoop реализуют стратегию «схема при...

Планирование заданий Spark в EDA-архитектуре

Как организовать эффективное планирование заданий Apache Spark в микросервисной архитектуре, управляемой событиями, с помощью паттернов Idempotent Consumer и Transactional Outbox. Проблемы оркестрации Spark-заданий shell-скриптами и переход к EDA-архитектуре При большом количестве приложений Apache Spark, которые взаимодействуют друг с другом как самостоятельные микросервисы, растет сложность управления ими. В частности, shell-скрипты позволяют...

Neo4j vs TigerGraph: сравнение графовых СУБД

Что общего у Neo4j с TigerGraph и чем они отличаются: разбираемся с популярными графовыми СУБД и их возможностями для аналитики больших данных в рамках продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях. Сравнение Neo4j с TigerGraph Подробно об архитектуре, принципах работы, функциональных возможностях и вариантах использования TigerGraph мы писали...

Обработка геоданных в Greenplum с PostGIS

Сегодня познакомимся с расширением PostGIS, которое позволяет PostgreSQL и Greenplum обрабатывать пространственные данные в геолокационных и логистических задачах. Как оно устроено и каковы ограничения его практического использования в MPP-СУБД. Что такое PostGIS и как это работает Как и PostgreSQL, Greenplum поддерживает геометрические типы данных, с помощью которых можно строить статичные...

Flink + dbt: разбор адаптера для SQL-конвейеров от GetInData

Недавно мы писали про использование AirFlow для оркестрации dbt-конвейеров. Сегодня познакомимся с адаптером dbt-flink, который позволяет запускать SQL-конвейеры в проекте dbt на Apache Flink. Зачем нужен адаптер dbt к Apache Flink и как он работает В аналитике данных огромную роль играет эффективный, стабильный и надежный ETL-процесс, реализовать который можно с...

Elasticsearch + Delta Lake: архитектура данных биотех-платформы Polly

Зачем биотехнологической платформе Polly от Elucidata понадобился API SQL-запросов в облачном сервисе Elasticsearch и как дата-инженеры реализовали его, развернув Delta Lake с AWS Atnena и S3. Что не так с SQL-запросами в облачном Elasticsearch на AWS Ежедневно биотехнологическая платформа Polly от Elucidata обрабатывает гигабайты биомолекулярных данных для биологов по всему...

Поиск по сайту