Побег от Cassandra в AWS S3 c Apache Spark: кейс сервиса Strava

В этой статье для дата-инженеров и разработчиков распределенных приложений потоковой аналитики больших данных разберем пример перевода сервиса Strava с кластера Cassandra в облачное хранилище AWS S3 и какую роль в этом сыграл вычислительный движок Apache Spark. Постановка задачи: слишком дорогая Cassandra Strava – это глобальный сервис отслеживания активности велосипедистов, бегунов...

Аналитика больших данных в реальном времени с Apache Kafka, Spark, ClickHouse и S3

Практический пример аналитики больших данных в реальном времени с Apache Spark, Kafka, ClickHouse и AWS S3: возможности, архитектура, также специально для дата-инженеров и разработчиков распределенных приложений рассмотрим, сколько времени нужно для разрешения каждого вызова API в определенном временном диапазоне. Анализ событий пользовательского поведения в реальном времени Основным продуктом международной ИТ-компании...

Аналитика больших данных с Apache Spark: UDF на Pyspark для вызова внешних REST API

Сегодня рассмотрим, как загружать большие объемы данных из REST API-сервисов с Apache Spark, написав на PySpark собственную UDF-функцию с преобразованием withColumn(), чтобы воспользоваться всеми преимуществами распределенных вычислений этого фреймворка. Локальное исполнение на драйвере и распараллеливание REST-API вызовов в Apache Spark Мы уже рассказывали, что конвертация Python-скрипта в распределенный код Apache...

Я за тобой слежу: настраиваем мониторинг Spark-приложений в кластере Kubernetes

Как организовать удобный мониторинг за приложениями Apache Spark в кластере Kubernetes с помощью Prometheus и Grafana: пошаговый guide для администраторов и дата-инженеров с примерами. Создаем свою альтернативу наглядным дэшбордам AWS EMR с Java-библиотекой Dropwizard Metrics и средством настройки оповещений Alertmanager. Не только AWS EMR или как следить за Spark-приложениями в...

MLOps на AirFlow, MLFlow и сервисах AWS с экономией на облачном кластере за счет Spark 3

В рамках обучения дата-инженеров и ML-специалистов лучшим практикам MLOps, сегодня рассмотрим практический пример построения конвейера машинного обучения на Airflow, MLFlow, SageMaker и других сервисах Amazon. А также как Apache Spark версии 3 сократил расходы на облачный EMR-кластер почти в 2 раза. MLOps с AirFlow и MLFlow в облаке AWS Ранее...

Анализ данных временных рядов с Apache Spark: пара примеров c Flint и Pandas

В этой статье для дата-инженеров и аналитиков рассмотрим пример мониторинга состояния электрогенераторов с помощью анализа данных временных рядов и ранжирования в pandas для предупреждения выхода оборудования из строя. А также разберем основы анализа временных рядов на больших данных с открытой библиотекой Flint для Apache Spark. Постановка задачи: температура и производительность...

Архитектура больших данных: 5 шаблонов проектирования распределенных систем

Недавно мы писали про архитектурный шаблон CQRS и его реализацию на базе Apache Kafka. В продолжение этой темы для обучения ИТ-архитекторов и разработчиков Big Data приложений, сегодня рассмотрим еще несколько популярных шаблонов проектирования распределенных систем: достоинства, недостатки, примеры реализации и способы их использования. Шаблоны проектирования распределенных систем: что это и...

От AWS EMR к Apache Spark 3 на Kubernetes в маркетплейсе Joom

Развивая наши курсы по Apache Spark и AirFlow для дата-инженеров и администраторов кластеров, сегодня рассмотрим кейс крупного маркетплейса Joom по переходу от 2-ой версии фреймворка на облачной платформе EMR к развертыванию сотен распределенных заданий на 3-ей версии в Amazon Elastic Kubernetes Service. Про сокращение расходов, повышение производительности и апдейт вычислительных движков. Постановка...

MLOps на практике: опыт Glassdoor

Практическая реализация MLOps-концепции на примере международной рекрутинговой компании Glassdoor. Как построить самоуправляемую автоматизированную систему разработки и сопровождения ML-моделей с MLFlow, Apache Spark и AirFlow, Kubernetes, GitLab, SageMaker Feature Store, Whylogs, Jenkins, Spinnaker и Prometheus с Grafana. Предыстория: зачем MLOps в Glassdoor Glassdoor с 2008 года помогает соискателям по всему миру...

Подсчет записей в CSV-файлах средствами Apache Spark

Чтобы сделать наши курсы по Apache Spark еще более полезными, сегодня разберем 2 варианта решения типовой задачи инженерии данных. Как быстро и эффективно считать данные из множества CSV-файлов с одинаковой схемой за несколько строк кода на PySpark. Постановка задачи: рутинная работа с CSV-файлами Наряду с JSON-файлами, про которые мы писали...

Поиск по сайту