Графовые алгоритмы без графовых баз данных: поиск сообществ с Networkx

Недавно мы разбирали, чем внутренне устройство графовых баз данных отличается от реляционных. Поэтому именно графовые базы целесообразно использовать для анализа больших графовов. Однако, на малых датасетах вполне можно обойтись и Python-библиотекой Networkx, что мы и рассмотрим далее на примере анализа банковских транзакций.   Python-скрипт поиска сообществ в графе с библиотекой...

Как считать данные из Apache Kafka с определенного момента: пишем Python-скрипт

Иногда возникает потребность в повторном чтении данных из Apache Kafka с определенного момента времени. Сегодня рассмотрим, как это сделать, написав простенький Python-скрипт потребления из раздела топика. Публикация данных в Kafka В качестве примера возьмем ранее рассмотренный в этой статье кейс приема потока обращений в интернет-магазин. Обращения могут представлять собой заявки...

Apache AirFlow 2.6: что нового?

Недавно мы писали про устранение зависших в очереди задач в Apache AirFlow 2.6. Сегодня разберемся с другими новинками этого релиза, которые особенно важны для дата-инженера: настраиваемые поля DAG, добавление собственных уведомлений, управление ресурсами, кластеризация исполнителей Kubernetes и еще множество полезных возможностей. Главные новинки и исправления весенних выпусков Apache AirFlow в...

Как посмотреть GUI приложения Apache Spark в Google Colab с ngrok

Сегодня посмотрим, как запустить Spark-приложение в Google Colab и увидеть сведения о его выполнении в веб-интерфейсе на удаленной машине, тунеллированной с помощью утилиты ngrok. Проброска туннеля в Google Colab с ngrok для Spark-приложения Хотя назвать Google Colab удобной средой для разработки приложений или исследования данных, нельзя, им часто пользуются аналитики...

Из Kafka во Flink: пишем Python-приложение

Сегодня рассмотрим, как написать и запустить в Google Colab свое Python-приложение считывания данных из топика Kafka с помощью коннектора FlinkKafkaConsumer из библиотеки pyflink.datastream.connectors  и почему заставить его работать оказалось не так просто. Использование FlinkKafkaConsumer для доступа к Kafka из Flink приложения Недавно я показывала, как написать PyFlink-скрипт считывания данных из...

6 лайфхаков работы с DAG в Apache AirFlow для дата-инженера

Что такое код верхнего уровня в Apache AirFlow, почему его следует избегать и как это сделать: шаблонные переменные, динамическое сопоставление задач, Python-функции и библиотеки для кэширования. А также 3 нативных способа создания перекрестных зависимостей между DAG для их запуска: TriggerDagRunOperator, ExternalTaskSensor и SimpleHttpOperator. Что такое код верхнего уровня в Apache...

Кто кому заплатил: пример поиска банковских транзакций в Neo4j

Чтобы показать еще один вариант использования графовой базы данных Neo4j, сегодня реализуем небольшое Python-приложение, которое генерирует граф знаний в облачной платформе Aura DB. Ищем финансовые переводы между компаниями и физическими лицами, считаем общую сумму и визуализируем найденные транзакции с помощью библиотеки Networkx. Python-приложение для работы с Neo4j в AuraDB Как...

Разделение датафрейма с partitionBy() в Apache Spark: практический пример

Как сгенерировать набор тестовых данных с Python-библиотекой Faker и разделить данные по разделам, используя функцию partitionBy() в PySpark. Работаем с Apache Spark в Google Colab. Как работает partitionBy() в Apache Spark Чтобы записать на диск один большой датафрейм, разделив его на несколько более мелких файлов, в Python API фреймворка Apache...

PL/Container для Greenplum: безопасный запуск UDF в Docker-контейнере

Как сделать запуск UDF-функций Python или R на узлах сегмента Greenplum более быстрым и безопасным с помощью Docker-контейнеров и расширения PL/Container. Что такое PL/Container и как это использовать в Greenplum Запуск пользовательского кода для базы данных всегда имеет риск нарушения информационной безопасности. Если речь идет о стеке Big Data, ущерб...

Пара Python-библиотек для дата-инженера: pandas 2.0 и polars

Что появилось нового в мажорном релизе самой популярной Python-библиотеки pandas, чем она похожа на Rust-пакет с Python API polars и в чем между ними разница: тестирование производительности и польза для дата-инженера. Главные новинки pandas 2.0 3 апреля 2023 года вышел долгожданный релиз Python-библиотеки pandas, которая для многих дата-инженеров, аналитиков данных...

Поиск по сайту