MLOps на практике: опыт Glassdoor

Практическая реализация MLOps-концепции на примере международной рекрутинговой компании Glassdoor. Как построить самоуправляемую автоматизированную систему разработки и сопровождения ML-моделей с MLFlow, Apache Spark и AirFlow, Kubernetes, GitLab, SageMaker Feature Store, Whylogs, Jenkins, Spinnaker и Prometheus с Grafana. Предыстория: зачем MLOps в Glassdoor Glassdoor с 2008 года помогает соискателям по всему миру...

Подсчет записей в CSV-файлах средствами Apache Spark

Чтобы сделать наши курсы по Apache Spark еще более полезными, сегодня разберем 2 варианта решения типовой задачи инженерии данных. Как быстро и эффективно считать данные из множества CSV-файлов с одинаковой схемой за несколько строк кода на PySpark. Постановка задачи: рутинная работа с CSV-файлами Наряду с JSON-файлами, про которые мы писали...

Еще больше и быстрее: извлечение данных из Neo4j с Apache Arrow

Дополняя наши курсы по аналитике больших данных в бизнес-приложениях новыми полезными примерами, сегодня рассмотрим, как Apache Arrow помогает повысить производительность извлечения данных из Neo4j с помощью их колоночного представления и обработки в памяти, а не на диске. Чем neo4j-arrow лучше драйверов Java и Python, а также собственной Neo4j библиотеки Graph...

Мониторинг Apache Airflow через Slack

В этой статье для разработчиков Data Flow, инженеров данных и администраторов Apache AirFlow рассмотрим, как организовать мониторинг этого batch-оркестратора через популярный корпоративный мессенджер Slack. Хотя по умолчанию Airflow имеет встроенную возможность отправлять оповещения по электронной почте, это не самый оперативный способ сообщить о критичной проблеме, к примеру, когда DAG с...

Spark NLP 3.4.0: новый релиз ML-библиотеки для Apache Spark 3.2.x на Scala 2.12

2022 год только начался, а John Snow Labs уже радует разработчиков ML-приложений новым релизом библиотеки Spark NLP. Ключевые фичи 3.4.0 для версии Apache Spark 3.2.x на Scala 2.12: новые GPT-2 трансформеры, аннотаторы для ALBERT, XLNet, RoBERTa, XLM-RoBERTa и Longformer, расширенный хаб готовых Machine Learning моделей и конвейеров, а также исправление...

Синергия Apache Airflow и Great Expectations для высокого качества больших данных

Сегодня рассмотрим, что такое Great Expectations, чем этот инструмент полезен для специалистов по Data Science и дата-инженеров, а также как связать его с Apache Airflow, какую пользу это принесет в задачах обеспечении качества данных. Также разберем кейс совместного использования Apache Airflow и Great Expectations в компании Vimeo и заглянем под...

Apache Airflow vs Beam: сходства и отличия

В этой статье по обучению дата-инженеров разберем, что такое Apache Beam, чем этот фреймворк отличается от AirFlow и что между ними общего. На первый взгляд Apache Airflow и Beam являются конкурентами: они предназначены для организации процессов обработки данных в определенном порядке. Оба инструмента являются open-source проектами, широко используются и поддерживаются...

Управление зависимостями между конвейерами данных в Apache Airflow и Prefect

Дополняя наши курсы для дата-инженеров по Apache AirFlow полезными примерами, сегодня поговорим про сложности управления зависимыми конвейерами данных в этом batch-оркестраторе. Как решить проблемы связанных DAG’ов в AirFlow и в альтернативном фреймворке Prefect. Все сложно: управление зависимыми DAG в Apache Airflow Apache AirFlow считается одним из самых популярных инструментов современной...

Бессерверный парсинг веб-сайтов на Apache NiFi и OpenFaaS с Selenium

Сегодня разберемся с serverless-технологиями и рассмотрим, как самостоятельно создать и интегрировать бессерверный парсер Selenium с Apache Nifi. Краткий ликбез по OpenFaaS, Selenium и Chromium, а также преимущества serverless-технологий и пример вызова функции сбора данных с веб-страницы на Python. Введение: serverless, OpenFaaS и Selenium с Chromium Serverless-стратегия организации платформенных облачных услуг,...

Как организовать Feature Engineering на SQL-запросах: инженерия Data Science

В рамках наших курсов для дата-инженеров и специалистов в области Data Science, сегодня рассмотрим, как реализовать один из важнейших этапов машинного обучения – Feature Engineering. Читайте далее, как генерировать признаки для ML-модели с помощью SQL, напрямую обращаясь к источникам данных и хранилищам фич, а также что такое Apache Hivemall и...

Управление жизненным циклом конвейеров Apache Airflow: советы дата-инженеров Databand

Развивая наши курсы для дата-инженеров по Apache AirFlow, сегодня рассмотрим, как автоматизировать развертывание сложных DAG’ов с помощью Docker и Kubernetes на примере управления конвейерами обработки данных. Лучшие практики и советы от инженеров данных DataOps-компании Databand. 4 вопроса дата-инженера к production-развертыванию конвейеров Apache Airflow Apache AirFlow считается одним из самых популярных...

Польза умных сенсоров Apache Airflow: Smart Sensor для LRLW-задач

Добавляя в наши курсы для дата-инженеров еще больше полезных примеров, сегодня рассмотрим, как Airbnb развивает Apache AirFlow и на практике используют эту платформу для создания, планирования и мониторинга конвейеров данных. Что такое Smart Sensor и как умные датчики экономят ресурсы на выполнение долгосрочных легковесных задач. Легкие, долгие и ресурсоемкие: проблемы...

На заметку разработчику Spark-приложений: 3 ошибки PySpark и тонкости Outer Join

В этой статье для дата-аналитиков и разработчиков распределенных приложений рассмотрим несколько распространенных ошибок, которые можно сделать в PySpark-коде. Когда PySpark-код на DataFrame DSL лучше запросов Spark SQL, как изящно решить проблему длинных строк, почему пользоваться функцией cache() надо осторожно, а также откуда появляются NULL-значения при внешних соединениях потоковых таблиц. Spark...

Комбо Apache Airflow и NiFi для запланированного запуска ETL-конвейеров: практическая инженерия Big Data

Чтобы сделать наши курсы для дата-инженеров еще более полезными, сегодня рассмотрим, как объединить Apache NiFi и Airflow в рамках одного ETL-конвейера обработки данных. Читайте далее, зачем совмещать эти технологии и как сделать это наиболее эффективно, обращаясь к конечным точкам REST API процессоров NiFi из задач DAG-графа AirFlow. Apache Airflow +...

Синергия Apache Airflow и Ray для MLOps-конвейеров: инженерия Data Science

MLOps и построение конвейеров машинного обучения – одни из самых актуальных задач современной Data Science. Сегодня рассмотрим, чем совместное использование Apache Airflow и Ray полезно для дата-инженера и ML-разработчика. Читайте далее про кластерное развертывание Python-кода ML-моделей и упрощение ETL-процессов с Apache Airflow и Ray. Apache AirFlow для ML: возможности и...

Соединения и хуки в Apache Airflow: разбираем на примере SQLite

В прошлый раз мы говорили о способе взаимодействия задач между собой в Apache Airflow. Сегодня поговорим о таких сущностях, как соединение (connections) и хуки (hooks). Читайте в этой статье: что такое хук и соединение, как создать и скачать соединение, а также как подключить базу данных в Airflow. Что такое связи...

Apache Flink 1.14: что нового?

29 сентября 2021 года вышла новая версия популярного Big Data фреймворка Apache Flink. Мы сделали краткий обзор главных улучшений свежего релиза 1.14 общедоступного дистрибутива, а также его коммерциализации в Ververica Platform 2.6. Узнайте, как потоковая обработка и аналитики больших данных с Apache Flink станет еще проще и эффективнее. Исправление ошибок...

Как задачи в Airflow взаимодействуют друг с другом через XCom и Variables

В одной из статей мы говорили о TaskFlow API, который позволяет задачам передавать и получить друг от друга информацию. За кулисами этого приема и передачи в Apache Airflow лежит XCom. Сегодня расскажем вам о том, как взаимодействуют задачи через XCom, а также, как задаются параметры конфигурации через особые переменные Apache...

Как повысить прозрачность Apache Spark: 3 способа мониторинга качества данных

В рамках обучения разработчиков Spark-приложений, аналитиков данных и дата-инженеров, сегодня рассмотрим, как улучшить и визуализировать понимание обработки данных в этом Big Data фреймворке. Читайте далее про API встроенных механизмов наблюдения за качеством данных в Apache Spark и открытые библиотеки профилирования на примере Deequ. 2 уровня абстракции мониторинга Spark-приложений для дата-инженера...

3 Р для контроля доступа к DAG’ам в Apache AirFlow: роли, ресурсы, разрешения

Добавляя в наши курсы для дата-инженеров по Apache Airflow полезные примеры, сегодня рассмотрим тонкости контроля доступа к DAG в этой платформе. Читайте далее, какие роли есть в Apache Airflow, каковы разрешения для них и как Flask AppBuilder осуществляет управление доступом к пользовательскому интерфейсу веб-сервера. Безопасность DAG’ов в Apache AirFlow: роли...