Где создать граф знаний и попробовать графовые алгоритмы для решения бизнес-задач: смотрим варианты запуска графовой СУБД на примере Neo4j. 4 варианта запуска Neo4j Neo4j является ярким представителем нереляционных СУБД и относится к категории графовых баз. Она поддерживает специализированные алгоритмы работы с графами, включая поиск путей, выявление сообществ, анализ связей и...
Недавно мы писали про резидентную графовую СУБД Memgraph, которая хранит данные в оперативной памяти. Сегодня рассмотрим, как выгрузить граф знаний из Memgraph на диск с помощью библиотеки GQLAlchemy, а также поговорим про персистентность другого популярного NoSQL-хранилища Redis, которое также является резидентным, но относится к семейству key-value. Как сохранить данные из...
В рамках продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях сегодня познакомимся с графовой резидентной СУБД Memgraph и сравним ее с Neo4j, определив достоинства, недостатки и варианты использования в задачах аналитики больших данных. Memgraph vs Neo4j Memgraph — это высокопроизводительная графовая СУБД с открытым исходным кодом, которая хранит и...
Что общего у Neo4j с TigerGraph и чем они отличаются: разбираемся с популярными графовыми СУБД и их возможностями для аналитики больших данных в рамках продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях. Сравнение Neo4j с TigerGraph Подробно об архитектуре, принципах работы, функциональных возможностях и вариантах использования TigerGraph мы писали...
Сегодня в рамках продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях, решим классическую задачу логистики в графовой базе данных Neo4j без использования методов ее специальной библиотеки Graph Data Science, а средствами Cypher-запросов. Постановка задачи: критерии оценки для поиска кратчайшего пути Поиск кратчайшего пути – это классическая задача на графах,...
Для продвижения нашего нового курса по графовым алгоритмам в бизнес-приложениях, сегодня рассмотрим 5 самых известных языков запросов для управления данными графов. Что общего у GraphQL, Gremlin, Cypher, SPARQL и AOL, а также чем они отличаются. GraphQL Языки запросов, используемые для управления данными графов (GQL, Graph Query Language), определяют способ извлечения...
В рамках продвижения нашего нового курса по графовой аналитики больших данных, сегодня рассмотрим, как создать граф социальных связей в веб-консоли Neo4j и сделать запросы к нему на Cypher - внутреннем SQL-подобном языке этой NoSQL-СУБД. Как построить граф социальных связей в Neo4j Возьмем в качестве примера набор деловых и личных взаимоотношений...
В рамках продвижения нашего нового курса по графовой для аналитики больших данных аналитике больших данных, сегодня познакомимся с клиентской Python-библиотекой Neo4j под названием Py2neo, которая позволяет отказаться от языка запросов Cypher. Читайте далее, что это такое, как работает и где пригодится. Python вместо Cypher в приложениях для Neo4j Манипуляции с...
Продвигая наш новый курс по графовой аналитике больших данных в бизнес-приложениях, сегодня разберем особенности работы оператора MERGE во встроенном SQL-подобном языке запросов Cypher популярной NoSQL-СУБД Neo4j. Чем он отличается от запросов CREATE и MATCH, а также когда этот оператор более всего полезен. Как работает MERGE-запрос в Neo4j Data Scientist’ы и аналитики данных знают,...
В рамках продвижения нашего нового курса по графовой аналитике больших данных в бизнес-приложениях, сегодня разберем сложности рефакторинга графовых моделей в Neo4j и способы их обхода с помощью библиотеки APOC и плагина Liquibase. Что такое Liquibase и как Data Scientist и аналитик данных могут использовать его совместно с Neo4j. Гибкость модели данных и трудности...