Асинхронное программирование в ML-системах

Поскольку концепция MLOps стремится устранить разрывы между разработкой ML-модели и ее имплементацией в эффективный программный код, сегодня поговорим про важную идею программирования, связанную с синхронностью и асинхронностью вызовов. Что такое асинхронное программирования, зачем это нужно в Machine Learning и какие Python-библиотеки поддерживают это. Проблемы синхронных вызовов в ML-системах В реальных...

Почему глубокому обучению не обойтись без MLOps

Сегодня разберем, что такое глубокое обучение и почему MLOps очень важен для этих методов Machine Learning. В чем особенности обучающих данных для моделей Deep Learning и зачем дополнять типовые MLOps-инструменты собственными разработками, избегая вредных антипаттернов. Машинное обучение vs Deep Learning: разница для MLOps Создание ML-систем сводится не только к разработке...

Построение MLOps-платформы с открытыми инструментами

Сегодня рассмотрим, как реализовать полноценный MLOps-цикл, используя свободные инструменты с открытым исходным кодом: MLflow, Kubeflow, Seldon, Streamlit, AirFlow, Git, Prometheus и Grafana. Процессы жизненного цикла ML-систем Концепция MLOps использует проверенные методы DevOps для автоматизации создания, развертывания и мониторинга конвейеров машинного обучения в производственной среде, устраняя рост технического долга в ML-проектах....

MLOps для Apache Flink с MLeap

Сегодня рассмотрим, как реализовать MLOps-идеи при разработке приложений Apache Flink с использованием MLeap, библиотеки сериализации для моделей машинного обучения. Зачем инженеры GetInData разрабатывали для этого свой коннектор и как его использовать на практике. Что такое MLeap и при чем здесь MLOps Будучи популярным вычислительным движком для потоковой аналитики больших данных,...

Мониторинг Machine Learning в production: полезные советы и MLOps-инструменты

Специально для обучения ML-разработчиков сегодня разберем проблемы развертывания моделей Machine Learning в производстве и способы их решения с помощью MLOps-инструментов. А также поговорим про дрейф данных и его обнаружение методами математической статистики. Жизненный цикл ML-моделей и MLOps Каждый проект машинного обучения начинается с данных, подготовка которых занимает большую часть жизненного...

7 причин не использовать Pickle-формат в MLOps для сохранения ML-моделей

Мы уже рассказывали про важность переносимости ML-моделей, что является одним из аспектов MLOps-концепции. Сегодня разберем, почему популярный формат Pickle не лучший выбор для сохранения модели Machine Learning и что использовать вместо него. Пара достоинств и 7 главных недостатков формата Pickle Согласно концепции MLOps, направленной на сокращение разрыва между различными специалистами,...

Инструментарий MLOps c MLflow и DVC: versus или вместе?

Продолжая разбираться с популярными MLOps-инструментами, сегодня рассмотрим, как MLflow реализует управление версиями модели и данных, а также чем это отличается от DVC. Преимущества и недостатки популярных MLOps-инструментов с возможностями их совместного использования. Плюсы и минусы MLflow для MLOps-инженера Концепция MLOps, направленная на сокращение разрыва между различными специалистами, участвующими в процессах...

MLflow vs Kubeflow: битва MLOps-инструментов

Недавно мы писали, от каких факторов зависит выбор подходящего MLOps-инструмента. В продолжение этой темы сегодня специально для ML-инженеров разберем сходства и различия двух самых популярных MLOps-решений: что общего у MLflow и Kubeflow, чем они отличаются и в каких случаях выбирать тот или иной инструмент. Краткий обзор 2-х самых популярных MLOps-решений...

MLOps и ТОП-5 практик работы с MLflow

Чтобы сделать наши курсы для специалистов по Machine Learning еще более интересными, сегодня рассмотрим 5 лучших практик по использованию популярного MLOps-инструмента. Как Data Scientist может работать с MLflow и сделать свои конвейеры машинного обучения еще более эффективными. Компоненты Mlflow для разработки и развертывания ML-систем Сегодня MLOps считается одним из самых...

От чего зависит выбор MLOps-инструментов: 3 главных фактора

В этой статье для специалистов по Machine Learning рассмотрим, от каких факторов зависит выбор MLOps-средств и как сделать его наиболее верным способом. Когда развертывание продукта с открытым исходным кодом или индивидуального решения на собственной инфраструктуре лучше готового инструмента в облаке и почему часто бывает наоборот. 3 главных фактора выбора MLOps-решений...

Поиск по сайту