MLOps для Apache Flink с MLeap

Сегодня рассмотрим, как реализовать MLOps-идеи при разработке приложений Apache Flink с использованием MLeap, библиотеки сериализации для моделей машинного обучения. Зачем инженеры GetInData разрабатывали для этого свой коннектор и как его использовать на практике. Что такое MLeap и при чем здесь MLOps Будучи популярным вычислительным движком для потоковой аналитики больших данных,...

Мониторинг Machine Learning в production: полезные советы и MLOps-инструменты

Специально для обучения ML-разработчиков сегодня разберем проблемы развертывания моделей Machine Learning в производстве и способы их решения с помощью MLOps-инструментов. А также поговорим про дрейф данных и его обнаружение методами математической статистики. Жизненный цикл ML-моделей и MLOps Каждый проект машинного обучения начинается с данных, подготовка которых занимает большую часть жизненного...

7 причин не использовать Pickle-формат в MLOps для сохранения ML-моделей

Мы уже рассказывали про важность переносимости ML-моделей, что является одним из аспектов MLOps-концепции. Сегодня разберем, почему популярный формат Pickle не лучший выбор для сохранения модели Machine Learning и что использовать вместо него. Пара достоинств и 7 главных недостатков формата Pickle Согласно концепции MLOps, направленной на сокращение разрыва между различными специалистами,...

Инструментарий MLOps c MLflow и DVC: versus или вместе?

Продолжая разбираться с популярными MLOps-инструментами, сегодня рассмотрим, как MLflow реализует управление версиями модели и данных, а также чем это отличается от DVC. Преимущества и недостатки популярных MLOps-инструментов с возможностями их совместного использования. Плюсы и минусы MLflow для MLOps-инженера Концепция MLOps, направленная на сокращение разрыва между различными специалистами, участвующими в процессах...

MLflow vs Kubeflow: битва MLOps-инструментов

Недавно мы писали, от каких факторов зависит выбор подходящего MLOps-инструмента. В продолжение этой темы сегодня специально для ML-инженеров разберем сходства и различия двух самых популярных MLOps-решений: что общего у MLflow и Kubeflow, чем они отличаются и в каких случаях выбирать тот или иной инструмент. Краткий обзор 2-х самых популярных MLOps-решений...

MLOps и ТОП-5 практик работы с MLflow

Чтобы сделать наши курсы для специалистов по Machine Learning еще более интересными, сегодня рассмотрим 5 лучших практик по использованию популярного MLOps-инструмента. Как Data Scientist может работать с MLflow и сделать свои конвейеры машинного обучения еще более эффективными. Компоненты Mlflow для разработки и развертывания ML-систем Сегодня MLOps считается одним из самых...

От чего зависит выбор MLOps-инструментов: 3 главных фактора

В этой статье для специалистов по Machine Learning рассмотрим, от каких факторов зависит выбор MLOps-средств и как сделать его наиболее верным способом. Когда развертывание продукта с открытым исходным кодом или индивидуального решения на собственной инфраструктуре лучше готового инструмента в облаке и почему часто бывает наоборот. 3 главных фактора выбора MLOps-решений...

Чего ждать в MLFlow 2.0: конвейеры от Databricks

В линейке продуктов Databricks не только облачная платформа аналитики больших данных на базе Apache Spark. В портфолио компании также присутствует популярный MLOps-инструмент под названием MLflow, последний релиз которого (1.27.0) вышел 1 июля 2022 года. Однако, разработчики уже анонсировали в мажорный выпуск новой версии MLOps-фреймворка с открытым исходным кодом. Читайте далее,...

Графовое машинное обучение: кейс Airbnb

В рамках продвижения нашего нового курса по графовой аналитике больших данных в бизнес-приложениях, сегодня разберем, как Airbnb использует графовые нейросети для улучшения машинного обучения. А также рассмотрим, как устроены GCN-нейросети и что определяет выбор между потоковым и пакетным ML-конвейером. Анализ графов для обогащения ML-моделей Многие проблемы машинного обучения могут быть...

Познакомьтесь с ModelOps: новый расширенный MLOps для бизнеса

Пока инженеры данных и специалисты по Data Science привыкали к MLOps, начав понимать важность и необходимость этой концепции непрерывной разработки и эксплуатации систем машинного обучения, в Data Science появился новый термин с модным –Ops окончанием. Разбираемся, что такое ModelOps, чем это отличается от MLOps и как применить его на практике....

Технологии и инструменты преобразования речи в текст

Чтобы добавить в наши курсы для дата-инженеров и специалистов по Machine Learning еще больше практических примеров, сегодня рассмотрим, как построить ETL-конвейер для преобразования речи в текст с использованием Apache Kafka, Airflow и Spark. А также познакомимся с популярными фреймворками и готовыми сервисами распознавания речи. ETL-конвейер распознавания речи: используемые технологии Предположим,...

MLOps и ТОП-7 фреймворков для федеративного машинного обучения

Сегодня в области Data Science именно машинное обучение является такой одновременно научной и прикладной сферой, где постоянно возникают новые прорывные идеи и технологии их реализации. Одной из самых популярных ML-тем сегодня считается федеративное машинное обучение. Что это такое и при чем здесь хайповый MLOps, читайте далее. Что такое федеративное машинное...

Как управлять изменениями в ML-системах с MLOps

Что и насколько часто меняется в системах машинного обучения, почему необходимо отслеживать эти изменения и как MLOps помогает справиться с управлением ML-моделями, данными, кодом и инфраструктурой развертывания. Почему стек технологий MLOps такой разношерстный и какие инструменты выбирать для практического использования. MLOps для решения дрейфа данных и других проблем ML-систем Машинное...

Вместо Git и Python: MLOps для разработки и развертывания ML-систем

Что не так с традиционными методами и инструментами разработки ПО для систем машинного обучения и как MLOps решает эти инженерные проблемы ML. Почему не стоит размещать файлы моделей Machine Learnig и датасеты в Git, а также зачем MLOps-инженеру решать вопросы архитектуры и управляться с Kubernetes. MLOps вместо Git-репозиториев Традиционные рабочие...

ТОП-5 проблем с данными в ML-системах и MLOps для их устранения

Что не так с датасетами в системах машинного обучения, с какими трудностями сталкиваются аналитики, инженеры данных и специалисты по Data Science при внедрении MLOps, почему важна согласованность различных информационных хранилищ, зачем и как внедрять оперативный мониторинг за качеством данных. Разбираем трудности разработки и поддержки Machine Learning в production. 5 проблем...

Feature Store на Apache HBase с Phoenix, RonDB и Kafka: кейс Dream11

Современные ML-системы представляют собой сложные комплексные платформы из множества компонентов, одним из которых является хранилище фичей для моделей машинного обучения. Индийская gamedev-компания Dream11 делится своим опытом, как построить такое Feature Store на базе Apache HBase с Phoenix, а также RonDB и Kafka. Что такое хранилище фичей и зачем это Dream11...

DevOps + MLOps: мониторинг ML-моделей с New Relic

Зачем нужен мониторинг ML-систем в production, чем он отличается от простого отслеживания метрик ПО и при чем здесь MLOps. Как настроить телеметрию ML-приложений в New Relic: 5 простых шагов для специалистов по Machine Learning и дата-инженеров. Зачем нужен мониторинг ML-систем и при чем здесь MLOps В реальных системах машинного обучения...

Что такое CML: MLOps и непрерывное машинное обучение

Что такое непрерывное машинное обучение, как оно работает и при чем здесь MLOps. Почему  сложно вести разработку ML-моделей в стиле CI/CD и как CML помогает обойти эти ограничения. Автоматизация процессов непрерывной интеграции и доставки с помощью open-source CLI-инструмента от Iterative.ai. Трудности CI/CD в Machine Learning и MLOps Поддерживаемые DevOps-концепцией идеи...

MLOps на Python и не только: кейс банка «Открытие»

Чтобы сделать наши курсы для специалистов в области Data Science и ML-инженеров еще более полезными, сегодня рассмотрим, как организовать сквозной CI/CD-конвейер разработки и развертывания системы машинного обучения в соответствии с MLOps-концепцией на 4-х популярных Python-инструментах: MLflow, DVC, Airflow, ClearML. А в качестве примера практической реализации этой идеи разберем кейс банка...

Практический MLOps: 4 стратегии развертывания систем Machine Learning

Сегодня рассмотрим наиболее распространенные в MLOps стратегии развертывания, т.е. подходы к внедрению моделей машинного обучения в производство. Выбор стратегии зависит от бизнес-требований и от контекста применения результатов ML-моделирования. Какие бывают стратегии и как они реализуются: краткий ликбез с примерами для ML-инженеров и MLOps-специалистов. Пакетное прогнозирование и веб-сервисы для MLOps Это...