Мы уже писали, какие инструменты пригодятся MLOps-инженеру для развертывания моделей машинного обучения в производственных средах. Сегодня рассмотрим, как сделать это, используя MLOps-паттерны и средства платформы Databricks Lakehouse. MLOps в production: шаблоны развертывания на платформе Databricks MLOps представляет собой набор лучших практик и инструментов для автоматизации управления кодом, данными и моделями,...
Как построить конвейер машинного обучения с помощью библиотеки Flink ML, из каких компонентов она состоит и как работает, а также что позволяет объединить алгоритмы потоковой обработки данных Apache Flink с ML-моделями. Что такое Flink ML Помимо MLeap, библиотеки сериализации для моделей машинного обучения, Apache Flink также включает Flink ML —...
Вчера я нашла очень интересный MLOps-проект, который позволяет построить конвейер поддержки жизненного цикла системы машинного обучения, используя более 50 популярных инструментов. Что такое MyMLOps и как это пригодится ML-инженерам. Что такое MyMLOps: новый сервис для MLOps Чтобы реализовать идеи концепции MLOps автоматизации всего жизненного цикл системы машинного обучения, от подготовки...
Чтобы сделать наши курсы для специалистов по Data Science и ML-инженеров еще более полезными, сегодня познакомимся с очень мощным инструментом MLOps – open-source платформой ClearML. Что это такое, как работает, насколько упрощает разработку продуктов Machine Learning, а также зачем бизнесу ClearGPT. Что такое ClearML и как это поможет MLOps-инженеру Концепция...
Из каких компонентов состоит архитектура MLOps, что такое инфраструктура как код, как управлять ею с помощью скриптов и почему это нужно на каждом этапе жизненного цикла моделей Machine Learning. Жизненный цикл ML-модели и MLOps MLOps – это набор методов и техник машинного обучения вместе с лучшими практиками разработки, развертывания и...
Проблемы анализа данных временных рядов и способы их решения: какие статистические методы и алгоритмы глубокого обучения лучше подходят для прогнозирования. Особенности прогнозирования временных рядов Напомним, временным рядом считается набор данных, каждая точка которого привязана ко времени (час, минуты, дни, месяцы, годы и прочие периоды). Эти данные имеют динамический характер и...
Сегодня посмотрим на MLOps с точки зрения организационного и технического управления, решив вопрос о подходе к разработке ML-системы, а также рассмотрим метрики ее оценки перед развертыванием в production. Управленческий MLOps: 2 подхода к разработке системы Machine Learning Модели машинного обучения могут показывать высокую точность работы своих алгоритмов даже на производственных...
Сегодня рассмотрим, как развернуть модель машинного обучения в конвейере Apache Kafka, используя потоковый API технологии удаленного вызова процедур от Google под названием gRPC и сервер ML-моделей TensorFlow Serving. Краткий ликбез по gRPC Напомним, gRPC – это технология интеграции систем, включая клиентский и серверный компоненты, основанная на удаленном вызове процедур в...
Зачем нужна Python-библиотека Evidently, и как она помогает специалистам по Data Science выявлять дрейф данных моделей Machine Learning в производственной среде. Знакомимся с еще одним MLOps-инструментом. Что такое дрейф данных, чем это опасно и как его обнаружить В отличие от многих других информационных систем, проекты машинного обучения очень сильно зависят...
Как MLOps-инженеры платформы онлайн-курсов Udemy ускорили цикл разработки и внедрения проектов машинного обучения, используя возможности Amazon SageMaker для создания и отладки Spark-приложений в удаленном облачном кластере. MLOps на AWS Чтобы воспользоваться преимуществами бесшовной интеграции процессов разработки и развертывания машинного обучения согласно концепции MLOps, совсем не обязательно выстраивать собственную платформу из...