ClearML для полного MLOps: примеры и возможности

Чтобы сделать наши курсы для специалистов по Data Science и ML-инженеров еще более полезными, сегодня познакомимся с очень мощным инструментом MLOps – open-source платформой ClearML. Что это такое, как работает, насколько упрощает разработку продуктов Machine Learning, а также зачем бизнесу ClearGPT. Что такое ClearML и как это поможет MLOps-инженеру Концепция...

Архитектура MLOps и управление инфраструктурой как кодом

Из каких компонентов состоит архитектура MLOps, что такое инфраструктура как код, как управлять ею с помощью скриптов и почему это нужно на каждом этапе жизненного цикла моделей Machine Learning. Жизненный цикл ML-модели и MLOps MLOps – это набор методов и техник машинного обучения вместе с лучшими практиками разработки, развертывания и...

Статистика vs глубокое обучение для анализа данных временных рядов: что выбрать?

Проблемы анализа данных временных рядов и способы их решения: какие статистические методы и алгоритмы глубокого обучения лучше подходят для прогнозирования. Особенности прогнозирования временных рядов Напомним, временным рядом считается набор данных, каждая точка которого привязана ко времени (час, минуты, дни, месяцы, годы и прочие периоды). Эти данные имеют динамический характер и...

Продуктовое мышление в MLOps и метрики оценки ML-модели

Сегодня посмотрим на MLOps с точки зрения организационного и технического управления, решив вопрос о подходе к разработке ML-системы, а также рассмотрим метрики ее оценки перед развертыванием в production. Управленческий MLOps: 2 подхода к разработке системы Machine Learning Модели машинного обучения могут показывать высокую точность работы своих алгоритмов даже на производственных...

MLOps c Kafka Streams и gRPC: 3 способа развернуть ML-модель в production

Сегодня рассмотрим, как развернуть модель машинного обучения в конвейере Apache Kafka, используя потоковый API технологии удаленного вызова процедур от Google под названием gRPC и сервер ML-моделей TensorFlow Serving. Краткий ликбез по gRPC Напомним, gRPC – это технология интеграции систем, включая клиентский и серверный компоненты, основанная на удаленном вызове процедур в...

MLOps c Python-библиотекой Evidently: обнаружение дрейфа данных в ML-моделях

Зачем нужна Python-библиотека Evidently, и как она помогает специалистам по Data Science выявлять дрейф данных моделей Machine Learning в производственной среде. Знакомимся с еще одним MLOps-инструментом. Что такое дрейф данных, чем это опасно и как его обнаружить В отличие от многих других информационных систем, проекты машинного обучения очень сильно зависят...

MLOps для Spark-приложений в AWS с Amazon SageMaker: кейс Udemy

Как MLOps-инженеры платформы онлайн-курсов Udemy ускорили цикл разработки и внедрения проектов машинного обучения, используя возможности Amazon SageMaker для создания и отладки Spark-приложений в удаленном облачном кластере. MLOps на AWS Чтобы воспользоваться преимуществами бесшовной интеграции процессов разработки и развертывания машинного обучения согласно концепции MLOps, совсем не обязательно выстраивать собственную платформу из...

FastAPI versus BentoML: что лучше для MLOps и почему

Что общего у FastAPI с BentoML, чем они отличаются и почему только один из них является полноценным MLOps-инструментом. Смотрим на примере операций разработки и развертывания API сервисов машинного обучения. Что общего у FastAPI с BentoML и при чем здесь MLOps С точки зрения промышленной эксплуатации, в проектах машинного обучения следует...

MLOps с Graphene: зачем и как использовать GraphQL для проектов Machine Learning

Недавно мы упоминали GraphQL как мощный и гибкий язык запросов к данным, хранящимся в графовых СУБД. Сегодня рассмотрим, чем эта технология может быть полезна в проектах Machine Learning, какие сложности с ней связаны и как их решить с помощью MLOps. GraphQL для ML: возможности и примеры Не будучи в чистом...

MLOps для устранения техдолга в проектах Machine Learning

Почему в проектах машинного обучения накапливается технический долг, каковы главные факторы его появления и каким образом MLOps устраняет проблемы, связанные с разработкой, тестированием, развертыванием и сопровождением систем Machine Learning. Скрытый технический долг в ML-системах Технический долг означает дополнительные затраты, возникающие в долгосрочной перспективе, с которыми сталкивается команда, в результате выбора...

TensorFlow на Apache Hadoop с TonY

Как LinkedIn построила масштабируемую инфраструктуру конвейеров машинного обучения, развернув модели TensorFlow на Apache Kafka, Spark и Hadoop YARN. Что такое платформа TonY, как она работает, почему изначально вычислительная парадигма MapReduce не очень хорошо подходила для глубокого обучения и как это исправить через конфигурацию настроек YARN. MLOps и проблемы глубокого обучения...

MLOps c Kubeflow: компоненты ML-конвейера

Помимо популярного MLflow от Databrics, специалисты по машинному обучению часто используют другой MLOps-инструмент – Kubeflow, о чем мы писали здесь. Сегодня разберем, как работает это средство, упрощающее разработку и развертывание конвейеров Machine Learning на платформе контейнерной виртуализации Kubernetes. Что такое конвейеры Kubeflow и как они работают Как мы уже отмечали,...

MLOps c LakeFS и MLflow: версионирование данных

Управление версиями датасетов для ML-моделей, а также версионирование самих алгоритмов машинного обучения является одной из важных задач MLOps-концепции непрерывной разработки и развертывания систем Machine Learning. Читайте, как реализовать это с помощью платформы LakeFS и фреймворка MLflow. Что такое LakeFS и при чем здесь MLOps Системы контроля версий, такие как Git,...

MLOps с Apache AirFlow: оркестрация ML-конвейеров

Apache AirFlow не зря считается у дата-инженеров самым популярным ETL-оркестровщиком. Сегодня посмотрим, чем этот фреймворк полезен в MLOps и как его использовать для оркестровки конвейеров машинного обучения. MLOps в конвейерах машинного обучения Конвейеры машинного обучения в производственной среде обслуживают ML-модели в реальных проектах. Чтобы эффективно управлять такими конвейерами связанных заданий,...

Разработка мультимодальных ML-моделей с TorchMultimodal

В марте 2022 года в Github появился исходный код TorchMultimodal – PyTorch-библиотеки для обучения масштабных мультимодальных многозадачных ML-моделей. А 17 ноября вышел бета-релиз этой библиотеки, который содержит множество полезных примеров и лучших архитектур глубокого обучения. Разбираемся с этой новой библиотекой. Что такое мультимодальные ML-модели и при чем здесь TorchMultimodal Человек...

MLOps c BentoML, MLflow и Kubeflow: автоматическое развертывание ML-модели

Чтобы сделать наши курсы для DevOps-инженеров и специалистов по Machine Learning еще более полезными, сегодня рассмотрим, как автоматизировать развертывание и обслуживание ML-моделей согласно концепции MLOps с помощью GitLab CI/CD, BentoML, Yatai, MLflow и Kubeflow. BentoML для CI в MLOPS При развертывании ML-модели необходимо учитывать следующие аспекты: как была построена модель...

Трудности выбора в MLOps: оркестрация ML-конвейеров с Vertex AI Pipelines и Apache AirFlow

Мы уже сравнивали MLflow и Kubeflow, которые позволяют управлять конвейерами машинного обучения. Продолжая эту важную для ML-инженера тему, сегодня рассмотрим 2 других MLOps-инструмента для оркестрации конвейеров Machine Learning: Vertex AI Pipelines и Apache AirFlow. Что такое Vertex AI Pipelines от Google Поскольку цель концепции MLOps в том, чтобы объединить разработку...

Асинхронное программирование в ML-системах

Поскольку концепция MLOps стремится устранить разрывы между разработкой ML-модели и ее имплементацией в эффективный программный код, сегодня поговорим про важную идею программирования, связанную с синхронностью и асинхронностью вызовов. Что такое асинхронное программирования, зачем это нужно в Machine Learning и какие Python-библиотеки поддерживают это. Проблемы синхронных вызовов в ML-системах В реальных...

Почему глубокому обучению не обойтись без MLOps

Сегодня разберем, что такое глубокое обучение и почему MLOps очень важен для этих методов Machine Learning. В чем особенности обучающих данных для моделей Deep Learning и зачем дополнять типовые MLOps-инструменты собственными разработками, избегая вредных антипаттернов. Машинное обучение vs Deep Learning: разница для MLOps Создание ML-систем сводится не только к разработке...

Построение MLOps-платформы с открытыми инструментами

Сегодня рассмотрим, как реализовать полноценный MLOps-цикл, используя свободные инструменты с открытым исходным кодом: MLflow, Kubeflow, Seldon, Streamlit, AirFlow, Git, Prometheus и Grafana. Процессы жизненного цикла ML-систем Концепция MLOps использует проверенные методы DevOps для автоматизации создания, развертывания и мониторинга конвейеров машинного обучения в производственной среде, устраняя рост технического долга в ML-проектах....