Стандартизация MLOps с CRISP-ML

Что представляет собой межотраслевой стандартный процесс машинного обучения CRISP-ML(Q), из каких этапов и задач он состоит, а также как согласуется с концепцией MLOps. Что такое CRISP-ML(Q) и при чем здесь MLOps Стандартизация подходов и процессов позволяет унифицировать и масштабировать лучшие практики управления исследованиями и разработкой, в т.ч. распространяя их на...

Horovod на Databricks для MLOps в глубоком обучении

Из чего состоит инфраструктура глубокого обучения Databricks и как масштабировать Deep Learning для нескольких графических процессоров или распределенных вычислений. Знакомимся с очередным MLOps-инструментом под названием Horovod. Что Horovod и как его использовать в Databricks Мы уже писали, почему глубокому обучению не обойтись без MLOps-инструментов, реализующих идеи DevOps для автоматизации разработки,...

Эффективный MLOps с TAO Toolkit от NVIDIA

Сегодня познакомимся с набором инструментов TAO Toolkit от NVIDIA на основе TensorFlow и PyTorch, который позволяет получить эффективный рабочий процесс с помощью лучших практик MLOps и возможностей трансферного обучения за счет оптимизации тренировки модели и ее пропускной способности для логического вывода на целевой платформе. Что такое TAO Toolkit от NVIDIA...

Как развернуть ML-модель в production: шаблоны эффективного MLOps от Databricks

Мы уже писали, какие инструменты пригодятся MLOps-инженеру для развертывания моделей машинного обучения в производственных средах. Сегодня рассмотрим, как сделать это, используя MLOps-паттерны и средства платформы Databricks Lakehouse. MLOps в production: шаблоны развертывания на платформе Databricks MLOps представляет собой набор лучших практик и инструментов для автоматизации управления кодом, данными и моделями,...

Машинное обучение с Apache Flink: основные концепции ML-библиотеки

Как построить конвейер машинного обучения с помощью библиотеки Flink ML, из каких компонентов она состоит и как работает, а также что позволяет объединить алгоритмы потоковой обработки данных Apache Flink с ML-моделями. Что такое Flink ML Помимо MLeap, библиотеки сериализации для моделей машинного обучения, Apache Flink также включает Flink ML —...

Как построить и запустить свой MLOps-конвейер с MyMLOps

Вчера я нашла очень интересный MLOps-проект, который позволяет построить конвейер поддержки жизненного цикла системы машинного обучения, используя более 50 популярных инструментов. Что такое MyMLOps и как это пригодится ML-инженерам. Что такое MyMLOps: новый сервис для MLOps Чтобы реализовать идеи концепции MLOps автоматизации всего жизненного цикл системы машинного обучения, от подготовки...

ClearML для полного MLOps: примеры и возможности

Чтобы сделать наши курсы для специалистов по Data Science и ML-инженеров еще более полезными, сегодня познакомимся с очень мощным инструментом MLOps – open-source платформой ClearML. Что это такое, как работает, насколько упрощает разработку продуктов Machine Learning, а также зачем бизнесу ClearGPT. Что такое ClearML и как это поможет MLOps-инженеру Концепция...

Архитектура MLOps и управление инфраструктурой как кодом

Из каких компонентов состоит архитектура MLOps, что такое инфраструктура как код, как управлять ею с помощью скриптов и почему это нужно на каждом этапе жизненного цикла моделей Machine Learning. Жизненный цикл ML-модели и MLOps MLOps – это набор методов и техник машинного обучения вместе с лучшими практиками разработки, развертывания и...

Статистика vs глубокое обучение для анализа данных временных рядов: что выбрать?

Проблемы анализа данных временных рядов и способы их решения: какие статистические методы и алгоритмы глубокого обучения лучше подходят для прогнозирования. Особенности прогнозирования временных рядов Напомним, временным рядом считается набор данных, каждая точка которого привязана ко времени (час, минуты, дни, месяцы, годы и прочие периоды). Эти данные имеют динамический характер и...

Продуктовое мышление в MLOps и метрики оценки ML-модели

Сегодня посмотрим на MLOps с точки зрения организационного и технического управления, решив вопрос о подходе к разработке ML-системы, а также рассмотрим метрики ее оценки перед развертыванием в production. Управленческий MLOps: 2 подхода к разработке системы Machine Learning Модели машинного обучения могут показывать высокую точность работы своих алгоритмов даже на производственных...