Масштабируемая индексация Apache HBase почти в реальном времени: кейс Pinterest

Обучая дата-инженеров и разработчиков распределенных приложений для аналитики больших данных, сегодня рассмотрим кейс компании Pinterest по построению масштабируемого решения для индексации записей в Apache HBase. Чем хранилище Ixia отличается от Lily HBase Indexer, зачем понадобился собственный аналог Solr и ElasticSearch, а также как все это работает в реальном времени с...

DataCater и Flow: еще пара альтернатив Apache Kafka для построения потоковых конвейеров

Недавно мы писали про платформы потоковой обработки событий, альтернативные Apache Kafka и Flink/Spark Streaming. В продолжение этой темы сегодня рассмотрим еще пару вариантов для разработки и самообслуживаемого использования потоковых конвейеров аналитики больших данных: DataCater и Flow. Читайте далее, что это за системы, как они связаны с Apache Kafka и какова...

CDC-конвейер для MySQL на Apache NiFi: практический пример

Сегодня разберем типичный для современной дата-инженерии кейс построения конвейера обработки измененных данных на Apache NiFi с учетом безопасности и масштабируемости API-вызовов. Также рассмотрим, зачем использовать Apache NiFi при межсистемной интеграции через API-вызовы и как реализовать CDC-подход к изменениям в СУБД MySQL с помощью процессоров этого популярного ETL-фреймворка. CDC и интеграция...

Не только Apache Kafka и Spark Streaming: 3 платформы потоковой аналитики больших данных

Продолжая недавний разговор про потоковую передачу событий и соответствующие Big Data инструменты, сегодня рассмотрим не отдельные фреймворки обработки данных в режиме реального времени, а комплексные платформы, которые объединяют сразу несколько технологий для интерактивной аналитики больших данных. Вас ждет краткий обзор Cloudera Streaming Analytics, Materialize и Rockset: что это такое, как...

Пакетная обработка событий с Apache Kafka: прикладная дата-инженерия

Хотя Apache Kafka стала стандартом де-факто для потоковой передачи событий, на этой платформе можно реализовать и пакетный режим вычислений. В рамках обучения дата-инженеров, сегодня рассмотрим, как совместить пакетную парадигму обработки Big Data с потоковой, развернув конвейер аналитики больших данных на Apache Kafka. Пакеты и потоки: versus или вместе Пакетную и потоковую...

Потоковая аналитика больших данных на Flink SQL и Redpanda вместо Apache Spark с Kafka

В продолжение недавней статьи для дата-инженеров про альтернативные платформы потоковой передачи событий вместо Apache Kafka, сегодня рассмотрим пример аналитики больших данных средствами Flink SQL, записи результатов в Elasticsearch и их визуализации в Kibana. Читайте далее, чем Redpanda отличается от Kafka, а Flink – от Apache Spark с точки зрения потоковой...

5 проблем Apache Kafka и как Redpanda их решает

При том, что Apache Kafka является фреймворком №1 в потоковой обработке Big Data, эта распределенная платформа передачи событий имеет специфические недостатки и ограничения, которые затрудняют ее использование в некоторых сценариях. Сегодня рассмотрим, что именно в Apache Kafka усложняет жизнь администраторам, разработчикам и дата-инженерам, а также как Redpanda решает эти проблемы....

Повышаем параллелизм и пропускную способность потоковых приложений с Apache Kafka и Akka Streams

В этой статье для разработчиков Apache Kafka рассмотрим пример масштабирования потоковой обработки событий с Akka Streams. Читайте далее, что не так с параллелизмом при одновременном выполнении событий на запись, как Akka Streams решает эту проблему и при чем здесь Apache Kafka. Проблемы масштабирования потоковой обработки в Kafka Streams Масштабная потоковая...

Платформа аналитики больших данных Леруа Мерлен: потоковый CDC с Apache Kafka, NiFi, AirFlow и Flink в DWH на Greenplum

Чтобы добавить в наши курсы для дата-инженеров по технологиям Apache Kafka, Spark, AirFlow, NiFi, Flink и Greenplum, еще больше практических примеров, сегодня разберем кейс ритейлера Леруа Мерлен. Читайте далее, как сотрудники российского отделения этой международной компании интегрировали в единую платформу более 350 реляционных СУБД и NoSQL-источников с помощью CDC-подхода на...

Потоковый конвейер обработки видео с Apache Kafka и алгоритмами Machine Learning

Сегодня рассмотрим пример построения интеллектуальными конвейера потоковой обработки видео с Apache Kafka и алгоритмами машинного обучения. Читайте далее, зачем для этого нужен протокол RTSP, что такое библиотека Sarama и как интегрировать алгоритмы машинного/глубокого обучения в систему видеоаналитики реального времени. Потоковая видеоаналитика: прием мультимедиа в реальном времени Видеоаналитика – одно из...

Apache Flink для пакетной и потоковой обработки Big Data в больших компаниях: примеры Pinterest и Alibaba Group

Сегодня рассмотрим пару кейсов по использованию Apache Flink в качестве основного фреймворка пакетной и потоковой аналитики больших данных. Читайте далее, как фото-хостинг Pinterest построил вокруг Flink собственную инфраструктуру работы с изображениями в реальном времени, а китайский ритейл-гигант Alibaba Group успешно обрабатывал 7 ТБ в секунду во время глобального дня шопинга....

FlowKat и Monokl: еще пара средств мониторинга за кластером Apache Kafka на базе KafkaJS

Недавно мы рассказывали про KafkaJS – клиент Apache Kafka для Node.js, который отличается небольшим размером и простым развертыванием с удобным API. Сегодня рассмотрим еще пару полезных инструментов визуализации данных о Kafka-кластере на базе KafkaJS и Prometheus. Читайте далее, что такое FlowKat и Monokl, а также зачем они нужны дата-инженеру, разработчику...

Что такое KafkaJS: как скрестить ежа с ужом, а Apache Kafka с Node.js

Сегодня рассмотрим, что такое KafkaJS, как это связано с Apache Kafka и JavaScript, в чем преимущества этой технологии и как разработчику распределенных приложений потоковой аналитики больших данных использовать ее на практике. Также вас ждет краткий ликбез по Node.js и примеры разработки KafkaJS-приложения. Краткий ликбез по Node.js Важными достоинствами архитектуры потоковой передачи...

Как рассчитать конверсию контекстной рекламы с помощью Apache Flink SQL: практический пример

Реклама является одним из наиболее крупных сегментов практического применения технологий Big Data. Поэтому сегодня рассмотрим, как Flink SQL реализует потоковую аналитику больших данных в AdTech-кейсах. Разбираем пример JOIN-соединения двух потоков событий - показов и кликов, чтобы вычислить конверсию рекламной кампании средствами Apache Flink или Spark. Потоки Big Data за фасадом...

Горизонтальное масштабирование кластера Apache Kafka: тонкости переназначения разделов

В поддержку курсов по администрированию Apache Kafka, сегодня рассмотрим особенности масштабирования кластера и связанное с этим переназначение разделов. Читайте далее, чем горизонтальное масштабирование лучше вертикального, как переназначить разделы между брокерами Kafka с целью перебалансировки нагрузки и зачем ограничивать полосу пропускания для перемещения реплик между узлами кластера. Проблемы масштабирования кластера Apache...

Потоковая аналитика больших данных в Grafana с Apache Kafka, Flink и SQL Stream Builder

Сегодня рассмотрим, как построить конвейер потоковой обработки событий на Apache Kafka, Flink и SQL Stream Builder с визуализацией результатов в Grafana. Далее вас ждет практический кейс применения технологий Big Data в реальном производстве на примере телеметрии процессов ферментации продуктов в небольшой частной пивоварне. Постановка задачи: бизнес-контекст и используемые технологии В...

Сложная обработка событий от IoT-устройств в Apache Kafka: кейс Tesla

Завершая серию статей по IoT-платформе компании Tesla на базе Apache Kafka, сегодня рассмотрим проблемы пиковой загрузки системы и особенности обработки высокоприоритетных событий. Читайте далее, как оптимально определить ключ раздела, чтобы снизить затраты на передачу данных, избежать перегрузки в пиковые моменты и отделить пользователей данных от разработчиков и дата-инженеров. Тонкости обработки...

Аналитика слишком больших данных в IoT-инфраструктуре Tesla c Apache Kafka, Alpakka и Akka Streams

Мы уже упоминали, что Apache Kafka не слишком хорошо обрабатывает сообщения чрезмерно большого размера. Сегодня рассмотрим, как эта проблема решается в конвейерах потоковой обработки IoT-инфраструктуры Tesla. Читайте далее про модификацию синтаксического анализатора данных от множества устройств интернета вещей с поиском компромисса между скоростью и надежностью с помощью коннектора Alpakka к...

Управление множеством IoT-устройств в Tesla на платформе Apache Kafka: организация топиков и парсинг сообщений

Продолжая разбирать кейс компании Tesla по организации централизованного управления устройствами интернета вещей (Internet of Things, IoT), сегодня разберем, как выполняется обработка сообщений в топиках Apache Kafka с помощью Confluent Schema Registry и Kafka Streams. Читайте далее, как определить потоковый процессор для парсинга данных в CSV и JSON-форматах с использованием схемы...

Тонкости потоковой передачи данных в BigQuery из Apache Kafka и Spark: 5 неочевидных особенностей

В рамках курсов для дата-инженеров и разработчиков распределенных приложений, сегодня рассмотрим пример построения системы потоковой передачи для аналитики больших данных на базе Apache Kafka, Spark и Google BigQuery. Читайте далее про Proof of Concept для конвейера продуктовой аналитики, который обрабатывает 50 миллиардов событий каждый день, и какие важные уроки ИТ-архитектор...