Недавно мы рассматривали оптимизацию SQL-запросов и выполнение JOIN-операций в Apache Spark. Сегодня поговорим, что обеспечивает строго однократную семантику доставку сообщений (exactly once) в этом Big Data фреймворке и как на это влияют особенности микро-пакетной обработки больших данных с помощью заданий Spark Structured Streaming. Особенности exactly once доставки сообщений в Apache...
Обучение Apache Spark, Kafka, Hadoop и прочим технологиям Big Data – это не только курсы, теоретические статьи и практические задания, но и проверка полученных знаний. Поэтому сегодня мы предлагаем вам открытый интерактивный тест по основам Спарк для начинающих. Проверьте, насколько хорошо вы знакомы с особенностями администрирования и эксплуатации этого популярного...
Чтобы сделать самостоятельное обучение технологиям Big Data по статьям нашего блога еще более интересным, сегодня мы предлагаем вам простой интерактивный тест по основам больших данных, включая администрирование кластеров, инженерию конвейеров и архитектуру, а также Data Science и Machine Learning. Тест по основам больших данных для новичков В продолжение темы,...
В этой статье разберем ключевые характеристики идеального конвейера обработки больших данных. Читайте далее, чем отличается Big Data Pipeline, а также какие приемы и технологии помогут инженеру данных спроектировать и реализовать его наиболее эффективным образом. В качестве практического примера рассмотрим кейс британской компании кибербезопасности Panaseer, которой удалось в 10 раз сократить...
В продолжение вчерашнего материала про потоковую аналитику больших данных с Apache Kafka и Spark, сегодня рассмотрим особенности совместного использования этих технологий Big Data. В этой статье мы собрали для вас 5 лучших практик эффективного применения Apache Kafka и Spark Streaming для разработки распределенных приложений аналитики больших данных в режиме реального...
Сегодня поговорим про ETL-процессы в мире Big Data на примере построения непрерывного конвейера поставки больших данных о транзакциях для сервисов машинного обучения. Читайте далее, из чего состоит типичная архитектура такой системы на базе Apache Kafka, Spark, HBase и Hive, а также почему большинство ETL-инструментов не подходят для потоковой передачи событий...
Продолжая разбирать, как работает аналитика больших данных на практических примерах, сегодня мы рассмотрим, что такое Graceful shutdown в Apache Spark Streaming. Читайте далее, как устроен этот механизм «плавного» завершения Спарк-заданий и чем он полезен при потоковой обработке больших данных в рамках непрерывных конвейеров на базе Apache Kafka и других технологий...
Сегодня поговорим про особенности перехода с локального Hadoop-кластера в облачное SaaS-решение от Google – платформу Dataproc. Читайте далее, какие 5 шагов нужно сделать, чтобы быстро развернуть и эффективно использовать облачную инфраструктуру для запуска заданий Apache Hadoop и Spark в системах хранения и обработки больших данных (Big Data). Шаги переноса Data...
В этой статье рассмотрим архитектуру и принципы работы системы хранения, аналитической обработки и визуализации больших данных на базе компонентов Hadoop, таких как Apache Spark, Hive, Tez, Ranger и Knox, развернутых в облачном Google-сервисе Dataproc. Читайте далее, как подключить к этим Big Data фреймворкам BI-инструменты Tableau и Looker, а также что обеспечивает...
Продолжая разговор про конвейеры обработки больших данных, сегодня рассмотрим пример использования Apache AirFlow в агрегаторе аренды частного жилья Airbnb. Читайте далее, в чем коварство накладных расходов при росте ETL-операций и других data pipeline’ов по запуску и выполнению заданий Spark, Hadoop и прочих технологий Big Data. Еще в этой статье разберем,...
Говоря про перспективы развития экосистемы Apache Hadoop с учетом современного тренда на SaaS-подход к работе с большими данными (Big Data), сегодня мы рассмотрим, как работает коннектор облачного хранилища Google для этого фреймворка. Читайте далее, чем HCFS отличается от HDFS и каковы преимущества практического использования Google Cloud Storage Connector for Hadoop....
В продолжение темы про новое в экосистеме Apache Hadoop, сегодня мы расскажем о проекте Ozone: как и зачем появилось это масштабируемое распределенное хранилище объектов, чем оно отличается от HDFS, что у него общего с Amazon S3 и как этот фреймворк позволяет совместить преимущества SaaS-подхода с локальными кластерами Big Data. ...
В последнее время в мире Big Data все меньше можно услышать новостей про Apache Hadoop. Сегодня рассмотрим, почему мифы о смерти Хадуп – это всего лишь мифы и как будет развиваться эта мощная экосистема хранения и обработки больших данных в будущем. Читайте в нашей статье про слияния и поглощения ведущих...
Сегодня поговорим про сохранение состояний при потоковой обработке больших данных с помощью Apache Spark и рассмотрим особенности Structured Streaming в новой версии этого популярного Big Data фреймворка. Читайте далее про Stateless и Stateful приложений в реальном времени, управление состояниями, связь DStream с RDD и UI в Spark Structured Streaming. Состояния в...
Недавно мы рассказывали про преимущества event-streaming архитектуры с помощью Apache Kafka на примере The New York Times. В продолжение этой темы Apache Kafka, сегодня поговорим про использование этой Big Data платформы в Twitter для построения конвейера потоковой регистрации событий в рекомендательной системе на базе алгоритмов машинного обучения (Machine Learning). Как...
При всех своих достоинствах Delta Lake, включая коммерческую реализацию этой Big Data технологии от Databricks, оно обладает рядом особенностей, которые могут расцениваться как недостатки. Сегодня мы рассмотрим, чего не стоит ожидать от этого быстрого облачного хранилище для больших данных на Apache Spark и как можно обойти эти ограничения. Читайте далее,...
Продолжая разговор про Delta Lake, сегодня мы рассмотрим, чем это быстрое облачное хранилище для больших данных в реализации компании Databricks отличается от классического озера данных (Data Lake) на Apache Hadoop HDFS. Читайте далее, как коммерческое Cloud-решение на Apache Spark облегчает профессиональную деятельность аналитиков, разработчиков и администраторов Big Data. Больше, чем...
Озеро данных (Data Lake) на Apache Hadoop HDFS в мире Big Data стало фактически стандартом де-факто для хранения полуструктурированной и неструктурированной информации с целью последующего использования в задачах Data Science. Однако, недостатком этой архитектуры является низкая скорость вычислительных операций в HDFS: классический Hadoop MapReduce работает медленнее, чем аналоги на Apache...
Завершая цикл статей про MLOps, сегодня мы расскажем про 5 шаблонов практического внедрения моделей Machine Learning в промышленную эксплуатацию (production). Читайте далее, что такое Model-as-Service, чем это отличается от гибридного обслуживания и еще 3-х вариантов интеграции машинного обучения в production-системы аналитики больших данных (Big Data), а также при чем тут...
Самообслуживаемая аналитика больших данных – один из главных трендов в современном мире Big Data, который дополнительно стимулирует цифровизация. В продолжение темы про self-service Data Science и BI-системы, сегодня мы рассмотрим, что такое Cloudera Data Science Workbench и чем это зарубежный продукт отличается от отечественного Arenadata Analytic Workspace на базе Apache...